2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Non conditional inequality
Сообщение02.04.2016, 23:23 
Аватара пользователя
Let $a$, $b$, $c$ are positive real numbers. Prove the following inequality:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{9}{a+b+c} \ge \frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}$

(Оффтоп)

It is an old and not hard inequality created by me and Leonard Giugiuc. I'm posting it here, because it might be interesting and is possible to inspire new similar problems.

 
 
 
 Re: Non conditional inequality
Сообщение03.04.2016, 00:34 
ins- в сообщении #1111600 писал(а):
Let $a$, $b$, $c$ are positive real numbers. Prove the following inequality:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{9}{a+b+c} \ge \frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}$

(Оффтоп)

It is an old and not hard inequality created by me and Leonard Giugiuc. I'm posting it here, because it might be interesting and is possible to inspire new similar problems.


Это просто неравенство Popoviciu:

$ f : I  \rightarrow \mathbb{R} $ be convex on $I$ and let $x, y, z \in I $. 

Then for any positive reals p, q, r:$

$$pf(x) + qf(y) + rf(z) + (p + q + r)f\left(\frac {px + qy + rz }{p + q + r}\right) \ge $$

$$ (p + q)f\left(\frac{px + qy}{p + q}\right)+(q + r)f\left(\frac{qy + rz}{q + r}\right)+(r + p)f\left(\frac{rz + px}{r + p}\right) $$

$f(x)=\frac{1}{x}$, $p=q=r=1$

 
 
 
 Re: Non conditional inequality
Сообщение03.04.2016, 10:11 
Аватара пользователя
It is interesting that: $\frac{9}{a+b+c}\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ (Irish MO 1998). Maybe it is the reason to like the problem. It can be solved in at least 3-4 more ways and allows generalizations and modifications.

 
 
 
 Re: Non conditional inequality
Сообщение03.04.2016, 10:22 
ins- в сообщении #1111698 писал(а):
It is interesting that: $\frac{9}{a+b+c}\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ (Irish MO 1998). Maybe it is the reason to like the problem. It can be solved in at least 3-4 more ways and allows generalizations and modifications.


$a,b,c >0$

1.$\frac{2^2}{a+b} \le \frac{1}{a}+\frac{1}{b} $ , ...

2. $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \ge \frac{3^2}{2(a+b+c)}$( С-S, Jensen ...)

 
 
 
 Re: Non conditional inequality
Сообщение03.04.2016, 15:43 
Можно ещё проинтегрировать очевидное $\sum\limits_{cyc}\left(x^2-2xy+\sqrt[3]{x^2y^2z^2}\right)\geq0$.

 
 
 
 Re: Non conditional inequality
Сообщение03.04.2016, 16:41 
Аватара пользователя
Probably ABC method works, too.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group