Поскольку в начале топика неразобравшись я заявил, что "класс теорий", упомянутый
Blancke_K, следует отправить в корзину, то теперь должен признать: я был неправ.
Помочь детальному обсуждению решений в неабелевых КТП не могу, у меня не хватает знаний. Сожалею, что я вообще что-то "мяукнул" в этой теме; просто "повёлся" на терминологию
Blancke_K, и вот о ней добавлю всё-таки ещё пару слов. Высказывая странное (на мой взгляд) предположение о нефундаментальности
Blancke_K говорил загадками: вместо того чтобы сразу назвать неабелевы КТП, он упоминал "КМ", "стандартные учебные курсы", мол там чего-то "недоговаривают", будто сомнительно, что можно ввести
в КМ, а потом ещё и "подход Ландау-Лифшица, основанный на принципе соответствия" будто не работает.
Но ведь книга ЛЛ-3, если её понимать под "учебным курсом по КМ", начинается с обсуждения электронов и с очевидностью ориентирована на то, чтобы дать знания в первую очередь об атомах, молекулах. В ЛЛ-4 изложена КЭД; функционального интеграла у ЛЛ нет. В книге Фейнмана "КМ и интегралы по траекториям" - тоже механика атомных систем, и кратко о КЭД. Из оглавлений явствует, что в этих учебниках не может быть речи о неабелевых калибровочных полях. Имхо, претензия типа в учебных курсах не по неабелевым КТП чего-то "не договаривается" о неабелевых КТП - абсолютно нелепая.
выбросим теорию или придём к выводу, что не всегда стоит верить учебным пособиям?
КТП не выбросим. А насчёт "верить учебным пособиям" ответ известный: наука это не религия. В текст учебника надо не "верить", а вдумываться - о чём там речь, и надо стремиться понять контекст авторов, а не зубрить учебник как универсальную молитву на все случаи жизни.
Нету глюонов, путешествующих по вселенной со скоростью света. Нечем обосновывать, потому что классические уравнения движения невозможно проверить в эксперименте. Нельзя, скажем, измерить классическую мощность излучения как в КЭД. Поэтому те, кто хотят понимать что-то в этой теории, должны отказаться от того, что написано у Ландау.
Последнее предложение не следует из предыдущих; и оно ошибочное: для понимания чего-либо в КХД не нужно отказываться от знания элементарной квантовой механики, изложенной в курсе ЛЛ.
Поскольку теперь я вроде понял, что постоянной Планка в любимой мной обычной КМ ничего не угрожает (так что размер атома имею право по-прежнему оценивать формулой Бора из стандартного курса
и затем сравнивать его, например, с метровой палкой), то уже без страха, а с большим интересом хотел бы узнать о дальнейших размышлениях специалистов по КТП насчёт роли
в мире непертурбативных полевых конфигураций (в частности: чем там определяется шкала длин, каковы типичные размеры решений с нетривиальной конфигурацией, как их сравнить с размером атома (или с чем тогда?) если окажется, что в мире неабелевых калибровочных полей нету
).