2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Задача про монету.
Сообщение18.01.2016, 12:41 
Сколько раз в среднем нужно подбросить монету, чтобы решка выпала 2 раза подряд?

Это похоже на геометрическое распределение. Можно рассматривать элементарные исходы такие, на мой взгляд: ОО, РР, РО, РР.

То есть $p=0,25$, $q=0,75$

$\mathbb{P}(Y = n) = q^n p,\; n=0,1,2,\ldots$

откуда

$\mathbb{E}[Y] = \frac{q}{p}=3$

То есть получается нужно три раза произвести эксперимент по 2 броска. То есть, в среднем 6 раз получается, верно ли?

 
 
 
 Re: Задача про монету.
Сообщение18.01.2016, 12:51 
Аватара пользователя
toreto в сообщении #1091751 писал(а):
Это похоже на геометрическое распределение. Можно рассматривать элементарные исходы такие, на мой взгляд: ОО, РР, РО, РР.
Вы два раза написали РР, а хотели написать: ОО, РР, РО, ОР.

По-моему, идея неправильная. Как я понял, Вы разбиваете броски на пары. Представьте, что среди нескольких последовательных пар РР не было ни разу, зато была ОР, за которой сразу РО. Тогда Вы не детектируете событие «две решки подряд», а оно произошло.

 
 
 
 Re: Задача про монету.
Сообщение18.01.2016, 12:54 
svv в сообщении #1091757 писал(а):
toreto в сообщении #1091751 писал(а):
Это похоже на геометрическое распределение. Можно рассматривать элементарные исходы такие, на мой взгляд: ОО, РР, РО, РР.
Вы два раза написали РР, а хотели написать: ОО, РР, РО, ОР.

По-моему, идея неправильная. Как я понял, Вы разбиваете бросания на пары. Представьте, что среди нескольких последовательных пар РР не было ни разу, зато была ОР, за которой сразу РО. Тогда Вы не детектируете событие «две решки подряд», а оно произошло.


Действительно, спасибо. А как тогда правильно начать решать?

 
 
 
 Re: Задача про монету.
Сообщение18.01.2016, 13:11 
Аватара пользователя
toreto в сообщении #1091751 писал(а):
Можно рассматривать элементарные исходы такие, на мой взгляд: ОО, РР, РО, РР.

Элементарный исход должен заканчиваться на "РР". И количество бросков монеты в нём может быть разное.

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 00:44 
мат-ламер в сообщении #1091767 писал(а):
toreto в сообщении #1091751 писал(а):
Можно рассматривать элементарные исходы такие, на мой взгляд: ОО, РР, РО, РР.

Элементарный исход должен заканчиваться на "РР". И количество бросков монеты в нём может быть разное.


Спасибо! У меня вышли такие элементарные исходы:

РР
ОРР
РОРР+ООРР
РООРР+ОРОРР+ОООРР
РОООРР+ОРООРР+ООООРР+РОРОРР+ООРОРР
....

А вероятности, соответственно равны $0,5^2$, $0,5^3$, $2\cdot 0,5^4$, $3\cdot 0,5^5$, $5\cdot 0,5^6$

Что-то мне напоминает числа Фиббоначи, не уж-то они самые?

$\mathbb{E}\xi=\displaystyle\sum_{n=1}^{\infty}F_n0,5^{n+1}$

Верно ли? Если, да -- то как вычислить эту сумму?

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 01:07 
Аватара пользователя
Может, рекуррентное соотношение найдете? Для средних. Или ещё иногда метод индикаторов помогает...

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 01:25 
provincialka в сообщении #1092053 писал(а):
Может, рекуррентное соотношение найдете? Для средних. Или ещё иногда метод индикаторов помогает...


Спасибо!


$a_n=F_n0,5^{n+1}$

$a_{n+1}=F_{n+1}0,5^{n+2}$

$a_{n+2}=F_{n+2}0,5^{n+3}=(F_{n} + F_{n+1})0,5^{n+3}=0,25a_n+0,5a_{n+1}$

Но как это поможет?

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 01:32 
Аватара пользователя
Ну... подобные рекуррентные соотношения решаются стандартным алгоритмом... Только вы ещё не доказали, что коэффициенты именно числа Фибоначчи.
Кроме того, я имела в виду рекуррентное соотношение для частичных сумм.

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 01:36 
Аватара пользователя
И ещё одно замечание.
$\sum_{n=1}^{\infty}F_n0{,}5^{n+1}$
Эта сумма равна единице. Не ожидали? Потому что это не мат.ожидание длины последовательности. Это сумма вероятностей всех исходов.

А то, что Вы хотели — это вот так:
$\sum_{n=1}^{\infty}F_n (n+1) 0{,}5^{n+1}$

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 01:47 
Аватара пользователя
По-моему число последовательностей, у которых 1 не может повторяться дважды уже обсуждалось «Комбинаторика»

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 02:05 
provincialka в сообщении #1092063 писал(а):
Ну... подобные рекуррентные соотношения решаются стандартным алгоритмом... Только вы ещё не доказали, что коэффициенты именно числа Фибоначчи.
Кроме того, я имела в виду рекуррентное соотношение для частичных сумм.

Ну это по индукции доказывается. А где можно почитать про этот стандартный алгоритм? Пока что не очевидно -- как строить рекурентное отношение для частичных сумм.

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 02:13 
Аватара пользователя
Вернее даже не рекуррентное, а просто уравнение. И не для частичных сумм, а сумм "без начала". То есть, когда суммирование начинается со второго или третьего элемента.
Можно вообще без ряда и без фибоначчи

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 02:43 
Кстати, это пример т. н. отрицательного биномиального распределения.

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 04:13 
Аватара пользователя
arseniiv в сообщении #1092085 писал(а):
Кстати, это пример т. н. отрицательного биномиального распределения.

Никакое отрицательное биномиальное распределение тут ни при чём. См. условие задачи. Испытания проводятся не до второго успеха, а до появления двух успехов подряд.

 
 
 
 Re: Задача про монету.
Сообщение19.01.2016, 06:33 
Ой, виноват.

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group