2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Матрица в степени матрица
Сообщение16.12.2015, 09:59 
Аватара пользователя
Пусть $A$ и $B$ - матрицы. Определена ли операция $A^B$ ?
Если она определена при некоторый условиях на матрицы - то при каких?

 
 
 
 Re: Матрица в степени матрица
Сообщение16.12.2015, 10:27 
Аватара пользователя
Записав, что $A^B=e^{B\cdot\ln(I+(A-I))}$, становится понятно, что в некоторых случаях такую операцию можно определить. Вот только пока непонятно, зачем? :shock:

 
 
 
 Re: Матрица в степени матрица
Сообщение16.12.2015, 10:51 
Аватара пользователя
Чтобы произвести некоторые действия с показателем степени, который имеет структуру скалярного произведения.

 
 
 
 Re: Матрица в степени матрица
Сообщение16.12.2015, 17:01 
Тут вообще вопрос в том, что такое возведение в степень. Об этом как-то (по поводу тетрации для комплексных вещественных чисел) было хорошо написано на Math.StackExchange: http://math.stackexchange.com/a/56710. Немного не в тему, но нельзя сказать, что совсем не.

 
 
 
 Re: Матрица в степени матрица
Сообщение16.12.2015, 19:06 
Аватара пользователя
Brukvalub в сообщении #1082608 писал(а):
Записав, что $A^B=e^{B\cdot\ln(I+(A-I))}$, становится понятно, что в некоторых случаях такую операцию можно определить.

И кроме того, становится понятно, что в большинстве случаев $B$ неперестановочна с $\ln(I+(A-I)),$ так что в виде с экспонентой - запись более общая.

 
 
 
 Re: Матрица в степени матрица
Сообщение16.12.2015, 20:00 
serval в сообщении #1082606 писал(а):
Пусть $A$ и $B$ - матрицы. Определена ли операция $A^B$ ?
Если она определена при некоторый условиях на матрицы - то при каких?

Неплохо бы сказать, какие матрицы берутся. Прямоугольные подходят или только квадратные одного размера? И какого размера предполагается результат? Или это вообще не матрица? Должна ли получившаяся матрица менаться по обычном правилам при замене базиса? Или чему должен равняться ответ в одномерном случае, скажем для $(-1)^{1/2}$?

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 02:30 
Аватара пользователя
Brukvalub в сообщении #1082608 писал(а):
Вот только пока непонятно, зачем?

Вот именно. Какие свойства степени хочется сохранить при том, что следующие свойства неверны:
$(AB)^n= A^nB^n$
$e^A e^B=e^{A+B}$

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 11:33 
Аватара пользователя
Даны следующие матрицы $A_1$ и $A_2$

$
A_1 = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\         
0 & 1 & 1
\end{pmatrix}
$ , $
A_{2}^{T} = \begin{pmatrix}
1 & 1 & 0 \\
0 & 2 & 2 \\         
0 & 0 & 3
\end{pmatrix}
$

Тогда

$
A_{1}^{x-1} = \begin{pmatrix}
1 & 0 & 0 \\
x-1 & 1 & 0 \\         
\frac{1}{2}(x-1)(x-2) & x-1 & 1
\end{pmatrix}
$

Требуется сделать замену $x=y^2$ где $x=e_1 A_{2}^{T} A_{1}^{x-1} e^1$ , $y^2=e_1 (A_{2}^{T})^2 A_{1}^{y-1} e^1$ , $e_1=(1,0,0)$ , $e^1=\begin{pmatrix}
1 \\
0 \\         
0
\end{pmatrix}$

Имеет ли такая операция смысл?

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 20:46 
serval в сообщении #1082929 писал(а):
$x=e_1 A_{2}^{T} A_{1}^{x-1} e^1$
Это один и тот же икс или разные?

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 21:22 
Аватара пользователя
Это один и тот же икс. Просто проверьте степень матрицы $A_1$:

http://www.wolframalpha.com/input/?i=%7B%7B1%2C0%2C0%7D%2C%7B1%2C1%2C0%7D%2C%7B0%2C1%2C1%7D%7D%5E%7Bx-1%7D

Но я неточно сформулировал задачу. Требуется произвести замену $x \to y$ .

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 21:37 
А, ну да, получается же число, чего это я. А где у вас тогда матрица в показателе степени? $y$ же тоже число.

serval в сообщении #1082929 писал(а):
Требуется сделать замену $x=y^2$ где $x=e_1 A_{2}^{T} A_{1}^{x-1} e^1$ , $y^2=e_1 (A_{2}^{T})^2 A_{1}^{y-1} e^1$
Что значит «сделать замену»? В обычном понимании всё легко заменяется, $x\mapsto y^2$ ли в первом равенстве, $y\mapsto \pm\sqrt x$ ли во втором (даже независимо от того, верны ли они).

-- Чт дек 17, 2015 23:38:45 --

serval в сообщении #1083054 писал(а):
Но я неточно сформулировал задачу. Требуется произвести замену $x \to y$ .
Всё ещё неточно. Такая замена элементарно делается. Попробуйте ещё точнее описать, что вы имели в виду.

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 22:14 
Аватара пользователя
arseniiv в сообщении #1083059 писал(а):
Попробуйте ещё точнее описать, что вы имели в виду.
serval, точно сформулированный вопрос (правильно поставленная задача) содержит порою не то что половину, а добрых девяносто процентов ответа!

(Оффтоп)

Вчера на собственном опыте в очередной раз в этом убедился.

 
 
 
 Re: Матрица в степени матрица
Сообщение17.12.2015, 22:28 

(Оффтоп)

Ну да, проблемы XY[Z] и крайне странные вопросы часто возникают от пробелов в базовых знаниях.

 
 
 
 Re: Матрица в степени матрица
Сообщение19.12.2015, 20:18 
Аватара пользователя
arseniiv в сообщении #1083059 писал(а):
А где у вас тогда матрица в показателе степени? $y$ же тоже число.

Все сомножители в показателе степени, включая орты $e_1$ и $e^1$ являются матрицами. Значит, исходную матрицу в степени число можно представить как произведение матриц в степени матрица (каждая матрица в своей матричной степени).

 
 
 
 Re: Матрица в степени матрица
Сообщение20.12.2015, 13:09 
Формулой бы это… А то пока кажется, что вы говорите, что $a^{bcd} = a^ba^ca^d$, но это же неверно даже в натуральных числах.

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group