2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Имеет ли решение система уравнений
Сообщение18.10.2015, 16:19 
имеется система уравнений
$$\left\{
\begin{array}{rcl}
 \log_2(2x^3+4x^2y-3x^2) = \log_{11} (4xy^2+24y^3-12y^2)\\
 \log_{11}(x^3+6x^2y-3x^2)= \log_2(8xy^2+16y^3-12y^2)\\
\end{array}
\right.$$

У меня получается, что она не имеет решения. Но есть сомнение, что я все делаю правильно или что возможно это просто подвох такой в задании.
Помогите разобраться! Если она таки решение имеет, то намекните правильный путь куда копать.

ход моих рассуждений следующий:

вводя замены:
\begin{array}{rcl}
 2x+4y-3 = z\\
 x+6y-3 = t\\
\end{array}
имеем:
$$\left\{
\begin{array}{rcl}
 \log_2 (zx^2) = \log_{11} (4ty^2)\\
 \log_2(4zy^2)= \log_{11}(tx^2)\\
\end{array}
\right.$$
далее, вычитая второе уравнение из первого получаем:
$$\left\{
\begin{array}{rcl}
 \log_2 (\frac{x^2}{4y^2}) = \log_{11} (\frac{4y^2}{x^2})\\
 \log_2(4zy^2)= \log_{11}(tx^2)\\
\end{array}
\right.$$
продолжая преобразования первого уравнения приходим к:
$$\
\begin{array}{rcl}
 -\log_2 (\frac{4y^2}{x^2}) = \log_{11}(2) \log_{2} (\frac{4y^2}{x^2})
\end{array}$$
что означает
$-1 $\ne$ \log_{11}(2)$
т.е. пустое множество

вопрос: правильно ли такое решение и если нет, то что я не учитываю?

 
 
 
 Posted automatically
Сообщение18.10.2015, 16:26 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- отсутствуют собственные содержательные попытки решения задач(и).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Re: Имеет ли решение система уравнений
Сообщение19.10.2015, 02:02 
 i  Тема перенесена из Карантина в «ПРР (М)»


Как минимум на последнем шаге возможна потеря корней: «нельзя делить на 0», т.е. $4y^2 \ne x^2$.
Остаётся проверить, не потеряли ли корни, путём прямой подстановки в исходные уравнения.

 
 
 
 Re: Имеет ли решение система уравнений
Сообщение19.10.2015, 09:36 
Да, это я учёл: как видно из исходных уравнений, нулевых корней у системы нет.

 
 
 
 Re: Имеет ли решение система уравнений
Сообщение19.10.2015, 09:53 
Имелось в виду, что $-\log_2 \frac{4y^2}{x^2} = \log_{11}2 \cdot \log_{2} \frac{4y^2}{x^2} \Rightarrow \log_{2} \frac{4y^2}{x^2} = 0$

 
 
 
 Re: Имеет ли решение система уравнений
Сообщение19.10.2015, 11:40 
Спасибо. Слона я не заметил:(
получается, что исходная система разбивается на три случая.
доковыряю - отпишусь...

 
 
 
 Re: Имеет ли решение система уравнений
Сообщение19.10.2015, 12:02 
Melichron в сообщении #1064315 писал(а):
что исходная система разбивается на четыре случая.

На два, один из которых после подстановки в $z,\;t$ сразу отпадает, а другой приводит к хорошему кубическому уравнению.

 
 
 
 Re: Имеет ли решение система уравнений
Сообщение19.10.2015, 12:37 
согласен, на два...

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group