Вопрос прежде всего преподавателям, но все остальные тоже приветствуются.
Классический учебник Ильина и Позняка "Линейная алгебра" построен следующим образом:
Глава 1. Матрицы и определители.
Глава 2. Линейные пространства.
Глава 3. СЛАУ.
Глава 4. Евклидовы пространства.
Глава 5. Линейные операторы.
Остальное - не то, о чем я хочу говорить.
В этом порядке я сию премудрость и штудировал. Помню впечатление от матриц - "а че, прямоугольные таблички из чисел, прикольно"; от умножения матриц - "муторная какая-то процедура, интересно, зачем она нужна?"; от определителей - "Боже, зачем ЭТО?!". Ну правда ведь, непонятное какое-то число, которое даже, даром что "определитель", не определяет свою матрицу (кстати, почему он так называется? Потому что определяет линейный оператор?), вычисляется по неизвестно с какого потолка взятому правилу (почему так? А если я другое число хочу вычислить? Да всяких комбинаций из элементов матрицы можно составить - хоть улицы мости, спасибо комбинаторике! Чем эта лучше?), к тому же правило весьма громоздкое (вычисляем определитель четвертого порядка через разложение на миноры. Господи, помоги мне). В общем - пота много, толку мало. Зачем все это - неясно, хоть убейся. И даже теорема о том, что равенство нулю определителя - критерий линейной зависимости строк, не спасает дело. Ну критерий, а чем она интересна, эта линейная зависимость строк матрицы?
И тут глава 2. Линейные пространства. Ого, как красиво! Какое широкое и простое обобщение. А эти, как их там, матрицы - они тоже линейное пространство, с их операциями сложения и умножения на число? Ага, точно. Ну, хорошо. Ага, базисы. Линейная независимость. Всякие
линейно независимых векторов образуют базис. А уж по базису можно разложить вообще любой вектор. Надо же, какая полезная вещь. И наглядная: два вектора линейно независимы, если неколлениарны, три - если не лежат в одной плоскости. Только как их распознавать-то? Вот три вектора заданы своими координатами, как узнать, линейно независимы они или где? Эээ... Задача. Стоп, где-то я про эту линейную независимость уже слышал. Ну да, это когда строки матрицы. А если вектор представить как строку координат, это не то же самое будет? Точно! Ну точно же! То же самое. И определитель этот... [censored]... А! Аа!! Аааааа!!!!!!!!!
Вот у меня вопрос: я один такой изумленный или эти две главы действительно лучше поменять местами? И подождать, когда матрицы возникнут естественным образом из координат векторов, а определитель - как критерий их линейной независимости? И, кстати, как площадь параллелограмма, о чем в учебнике не написано ВООБЩЕ?