2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 09:51 
Аватара пользователя
rgwwergggw
Объясните, пожалуйста, как связан весь текст Вашего последнего сообщения с формулой в конце этого сообщения.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 09:54 
Аватара пользователя
rgwwergggw в сообщении #1017038 писал(а):
Если первый звонок оказался неверным, а второй -- верным, вероятность равна$\frac{ 99 }{ 100 } \cdot \frac{ 1 }{ 99}$;

Почему?!

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 11:16 
grizzly, изначально я неправильно понял задачу, не поразмыслив над ней более детально. В конце, по моему мнению, самый ответ. Что вас смутило в тексте в последнем предложении?

Лукомор, если первый звонок оказался верным, вероятность = 1/100. Следовательно, вторая попытка нам сулит, что если первый оказался неверным, но второй верным, вероятность равна противоположному событию к вероятности, полученной при первом верном звонке и оставшемуся количеству наборов двузначных комбинаций, коих, после набора одной из при первом звонке, ровно 99. То есть 1/99 -- это вероятность не повторить свою прошлую комбинацию и набрать правильную. События несовместны, следовательно, если первый оказался неверным, но второй верным, вероятность равна $\frac{ 99 }{ 100 } \cdot \frac{ 1 }{ 99}$.

-- 19.05.2015, 12:18 --

nondeterminism, эти претензии не ко мне. С уважаемой provincialka мы уже разобрали этот вопрос. Имелось в виду определить вероятность того, что он верно дозвонится до Абрама с не более чем четвертой попытки.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 11:22 
Аватара пользователя
rgwwergggw в сообщении #1017080 писал(а):
Что вас смутило в тексте в последнем предложении?

Меня смутило полное несоответствие текста и формулы. Об этом и был мой вопрос.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 11:26 
grizzly, :o . Можно чуть-чуть подробнее? Просто я опустил тот момент, что A(i)-- вероятность дозвониться с i-ой попытки = 0.01 (при любом i)
B(i)- вероятность не дозвониться с i-ой попытки =0.99. Это выходит из непосредственного вычисления.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 11:37 
Аватара пользователя
rgwwergggw в сообщении #1017086 писал(а):
Можно чуть-чуть подробнее?

Ну вот, например, у Вас по тексту:
rgwwergggw в сообщении #1017038 писал(а):
...второй и третий оказались неверными, а четвертый -- верный, вероятность равна $\frac{ 99 }{ 100 } \cdot \frac{ 99 }{ 100 } \cdot \frac{ 99 }{ 100 } \cdot \frac{ 1 }{ 97 }$

а в итоговой формуле последнее слагаемое совсем другое:
rgwwergggw в сообщении #1017038 писал(а):
$...0.99\cdot 0.99\cdot 0.99\cdot 0.01...$

Вот я и пытаюсь понять связь.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:00 
grizzly, ну там почти везде 0.01. Если учитывать все миллионные и миллиардные, безусловно выйдет число истинное, но суть не далекое от полученного ответа.

-- 19.05.2015, 13:03 --

Если верить WFalpha, то истинный ответ 0.0400041028823900694298337891857774037450031559015358...$ \aprox $ 0.04.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:03 
Аватара пользователя
rgwwergggw в сообщении #1017102 писал(а):
grizzly, ну там почти везде 0.01.

Понятно. В таком случае решение неверно. Ответ в некотором смысле верен (в смысле некоторой интерпретации условия), но Вы пока не можете объяснить в каком.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:06 
grizzly, все дело в лени. Мне было лень набирать дроби в окончательном действии. :-)

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:07 
Аватара пользователя
grizzly в сообщении #1017104 писал(а):
Если верить WFalpha, то истинный ответ ...

Вот видите. А Вы выписываете кучу знаков после запятой, не заботясь о точности округления.

grizzly в сообщении #1017104 писал(а):
Ответ в некотором смысле верен

Лучше скажу, чтобы не запутывать ситуацию. Ваш ответ в точности соответствует варианту, когда Джон после каждого звонка забывает номер по которому он только что звонил: $P=1-0.99^4=0.03940399$.

-- 19.05.2015, 12:08 --

rgwwergggw в сообщении #1017105 писал(а):
grizzly, все дело в лени.

Ок, но вот видите, к какой неразберихе это приводит :D А $99/100$ всюду выглядят действительно странно после того, как мы уже отбросили какие-то варианты. Или это тоже из-за лени и Вам проще копировать, чем каждый раз новые дроби набирать?

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:08 
Аватара пользователя
rgwwergggw в сообщении #1017080 писал(а):
События несовместны, следовательно, если первый оказался неверным, но второй верным, вероятность равна $\frac{ 99 }{ 100 } \cdot \frac{ 1 }{ 99}$.


То-есть, вероятность дозвониться правильно за две попытки какая?

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:11 
rgwwergggw в сообщении #1017102 писал(а):
grizzly, ну там почти везде 0.01. Если учитывать все миллионные и миллиардные, безусловно выйдет число истинное, но суть не далекое от полученного ответа.
А почему тогда в ответе учитываете милионные и миллиардные
rgwwergggw в сообщении #1017038 писал(а):
Итого, искомая вероятность будет равна $0.01+0.99\cdot 0.01+0.99\cdot 0.99\cdot 0.01+0.99\cdot 0.99\cdot 0.99\cdot 0.01= 0.03940399$
. Кстати, оно близко к $0,04$.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:14 
Аватара пользователя
Shadow в сообщении #1017109 писал(а):
. Кстати, оно близко к $0,04$.

    grizzly в сообщении #1017106 писал(а):
    ответ в точности соответствует варианту, когда Джон после каждого звонка забывает номер по которому он только что звонил: $P=1-0.99^4=0.03940399$.

 
 
 
 Re: Джон и номер телефона
Сообщение19.05.2015, 12:20 

(Оффтоп)

Цитата:
Там с левой стороны 2 Бронецких.
Один господин Андриан, другой Мариан.
А у меня Мандриан.


 
 
 [ Сообщений: 29 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group