2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Система аксиом метрического пространства
Сообщение07.05.2015, 22:48 
Аватара пользователя
Всех приветствую!
Задача следующая:

*Доказать, что система аксиом метрического пространства непротиворечива и независима.

Правильно ли, что непротиворечивость означает невозможность вывода из системы утверждения и его отрицания. А зачем тут что-то(и как) доказывать, если таким образом определено некое пространство: если так, то да - оно; нет - ну и ладно. Не понимаю...

Про независимость смысл есть: каждое не должно быть следствием остальных.

Спасибо.

 
 
 
 Re: Система аксиом метрического пространства
Сообщение07.05.2015, 22:51 
непротиворечивость доказывается тривиально путем предъявления метрического пространства, независимость доказывается путем предъявления функции, которая обладает одними свойствами метрики и не обладает другими

 
 
 
 Re: Система аксиом метрического пространства
Сообщение07.05.2015, 23:11 
Аватара пользователя
Oleg Zubelevich хм... т.е. для непротиворечивости достаточно привести хотя бы один пример?

 
 
 
 Re: Система аксиом метрического пространства
Сообщение08.05.2015, 00:52 
Аватара пользователя
1r0pb в сообщении #1012266 писал(а):
Oleg Zubelevich хм... т.е. для непротиворечивости достаточно привести хотя бы один пример?
Теории и элементарная эквивалентность
Цитата:
Теория, имеющая хотя бы одну модель, называется непротиворечивой,

 
 
 
 Re: Система аксиом метрического пространства
Сообщение08.05.2015, 12:32 
Аватара пользователя
Dan B-Yallay спасибо. Так уже интереснее.
Ну допустим $\rho (x,y)=|x-y|.$ Проверяем выполнение аксиом. Все хорошо. Но что дальше?

Про независимость:
1) аксиома тождества: $\rho (x,y)=|x^2-y^2|.$
(остальные выполняются);
2) аксиома симметрии: еще не придумал )
3) аксиома треугольника:
Пусть $E\ -$ множество всех точек окружности. Зафиксируем на окружности точку $M_0$ и определим расстояние $\rho (M,N)$ между двумя точками этой окружности следующим образом: если $M\ne M_0$ и $N\ne M_0$, то $\rho (M,N)$ равно длине той дуги окружности, которая соединяет точки $M$ и $N$, и не проходит через точку $M_0$; если $M=M_0$ или $N=M_0$, то $\rho (M,N)$ равно длине кратчайшей дуги, соединяющей точки $M$ и $N$; если $M=N$, то $\rho (M,N)=0.$

Так примерно должно быть?

 
 
 
 Re: Система аксиом метрического пространства
Сообщение08.05.2015, 19:24 
1r0pb
Да, всё хорошо.
Для придумывания подобных примеров обычно полезно отойти от привычного $\mathbb{R}$ и придумывать "метрику" для какого-нибудь множества попроще, тогда и строить будет удобнее. Возьмите, к примеру, двух- или трёхточечное множество - на таком придумать примеры, особенно для симметрии, - секундное дело. Примеры, конечно, получаются не столь художественные, как у вас, но дело своё делают.

 
 
 
 Re: Система аксиом метрического пространства
Сообщение08.05.2015, 21:58 
Аватара пользователя
NSKuber прозвучало обнадеживающе. :-)

Ну ладно. По поводу симметрии.
Рассмотрим $\{x,\frac{x+y}{2},y\}$ в $\mathbb{R}.$ Для всех элементов принимаем евклидово расстояние, за исключение того, что от $y$ до $\frac{x+y}{2}$ берем расстояние по дуге, где длина последней не более расстояния от $x$ до $y.$

Вроде проходит. :D

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group