2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Высечка из парабалоида
Сообщение11.02.2006, 11:47 
Здраствуйте.
Очень прошу вашей помощи.

Задача такова:
есть парабалоид вращения с фокусом в точке F.
y=(x^2+z^2)/4F - вроде бы так, если я не ошибаюсь (хотя не уверен).
есть цилиндр, радиусом R, который прооходя параллельно оси фокуса парабалойда высекает из него некую фигуру -- элипс.
Возможно ли получить формулу поверхности нашей высеченной фигуры. Чтобы возможно было определение любой точки в пространстве для высеченой поверхности.

Вот как это выглядит на рисунке:
Изображение

Очень надеюсь на вашу помощь.

 
 
 
 Re: Высечка из парабалоида
Сообщение11.02.2006, 21:24 
Аватара пользователя
X_NU писал(а):
Задача такова:
есть парабалоид вращения с фокусом в точке F.
y=(x^2+z^2)/4F - вроде бы так, если я не ошибаюсь (хотя не уверен).
есть цилиндр, радиусом R, который прооходя параллельно оси фокуса парабалойда высекает из него некую фигуру -- элипс.


Как-то не очень понятно сформулировано. Рисунок как будто бы показывает, что ось параболоида совпадает с одной из образующих цилиндра, так что уравнение цилиндра можно взять в виде $x^2+(z-R)^2=R^2$. Однако пересечение цилиндра и параболоида эллипсом назвать трудно. И непонятно, что означает красный сегмент на рисунке.

X_NU писал(а):
Возможно ли получить формулу поверхности нашей высеченной фигуры. Чтобы возможно было определение любой точки в пространстве для высеченой поверхности.


Да формула-то стандартная: $$S=\iint\limits_{\mathcal D}\sqrt{\left(\frac{\partial y}{\partial x}\right)^2+\left(\frac{\partial y}{\partial z}\right)^2+1}dxdz$$$, где $\mathcal D$ - область, определяемая неравенством $x^2+(z-R)^2\leqslant R^2$. Вычислять интеграл проще в полярных координатах.

 
 
 
 
Сообщение11.02.2006, 21:44 
В данном случае на рисунке действительно так - ось параболоида совпадает с одной из образующих цилиндра. Однако - это частный случай, хотелось бы рассмотреть и вариант при котором образующая не совпадает с осью парабалоида.

Насчёт красного сегмента на рисунке -- он ничего не означает.

А какая всё же фигура получится?

 
 
 
 
Сообщение11.02.2006, 21:58 
Аватара пользователя
X_NU писал(а):
В данном случае на рисунке действительно так - ось параболоида совпадает с одной из образующих цилиндра. Однако - это частный случай, хотелось бы рассмотреть и вариант при котором образующая не совпадает с осью парабалоида.


Общий случай ничем от частного не отличается, кроме области интегрирования. Кстати, результат через элементарные функции не выражается, получаются эллиптические интегралы.

X_NU писал(а):
А какая всё же фигура получится?


Я не думаю, что она имеет какое-нибудь специальное название.

 
 
 
 
Сообщение11.02.2006, 22:26 
Как этот интеграл будет выглядеть для моего случая с моими формулами?
Чего-то с интегралами я не особо дружу ещё с института. :)

 
 
 
 
Сообщение12.02.2006, 00:18 
Аватара пользователя
X_NU писал(а):
Как этот интеграл будет выглядеть для моего случая с моими формулами?


Здесь $\frac{\partial y}{\partial x}=\frac{x}{2F}$, $\frac{\partial y}{\partial z}=\frac{z}{2F}$. Подставляя в интеграл, получим $$S=\frac{1}{2F}\iint\limits_{\mathcal D}\sqrt{x^2+y^2+4F^2}dxdz$$.
Переходим к полярным координатам: $x=r\cos\varphi$, $y=r\sin\varphi$, $|j(r,\varphi)|=r$. Область интегрирования $x^2+(z-R)^2\leqslant R^2$, то есть, $x^2+z^2\leqslant 2Rz$, превращается в
$$\begin{cases}0\leqslant r\leqslant 2R\sin\varphi,\\0\leqslant\varphi\leqslant\pi.\end{cases}$$
Расставляя пределы интегрирования, получим
$$S=\frac{1}{2F}\int\limits_0^{\pi}d\varphi\int\limits_0^{2R\sin\varphi}\sqrt{r^2+4F^2}rdr=\frac{1}{4F}\int\limits_0^{\pi}d\varphi\int\limits_0^{2R\sin\varphi}\sqrt{r^2+4F^2}d(r^2+4F^2)=$$.
$$=\frac{1}{4F}\int\limits_0^{\pi}d\varphi\left .\frac{2}{3}\sqrt{(r^2+4F^2)^3}\right |_0^{2R\sin\varphi}=\frac{1}{6F}\int\limits_0^{\pi}\left(\sqrt{(4R^2\sin^2\varphi+4F^2)^3}-8F^3\right)d\varphi=$$
(интеграл от второго слагаемого сразу вычисляется, а в оставшемся интеграле пользуемся симметрией подынтегральной функции: $\sin\varphi=\sin(\pi-\varphi)$; поэтому интегралы по промежуткам $[0,\frac{\pi}{2}]$ и $[\frac{\pi}{2},\pi]$ равны)
$$=\frac{8F^2}{3}\int\limits_0^{\frac{\pi}{2}}\sqrt{\left(1+\frac{R^2}{F^2}\sin^2\varphi\right)^3}d\varphi-\frac{4}{3}\pi F^2$$.
После целого ряда преобразований, с которыми мне не хочется возиться, этот интеграл можно выразить через полные эллиптические интегралы первого и второго рода:
$$\mathrm K(m)=\int\limits_0^{\frac{\pi}{2}}\frac{1}{\sqrt{1-m\sin^2\varphi}}d\varphi$$ и $$\mathrm E(m)=\int\limits_0^{\frac{\pi}{2}}\sqrt{1-m\sin^2\varphi}d\varphi$$, где $m=-\frac{R^2}{F^2}$.
Окончательный результат, полученный с помощью программы Mathematica, такой:
$$S=\frac{16}{9}(2F^2+R^2)\mathrm E\left(-\frac{R^2}{F^2}\right)-\frac{8}{9}(F^2+R^2)\mathrm K\left(-\frac{R^2}{F^2}\right)-\frac{4}{3}\pi F^2$$.

 
 
 
 
Сообщение12.02.2006, 13:05 
Спасибо.
Полученные расчёты, как я понял дают нам площадь полученной (высеченой) фигуры.
На самом деле меня интересовала немного другая вещь.
Возможно ли получить некую функцию F(x,y,z) (уравнение, систему уравнений, или нечто другое) с помошью которой можно было бы определить положение каждой точки в пространстве для высечки из парабалоида.
Т.е. чтобы была возможность зная x,y координаты точки возможно было бы найти её z координату.

 
 
 
 
Сообщение12.02.2006, 13:28 
Аватара пользователя
X_NU писал(а):
Возможно ли получить формулу поверхности нашей высеченной фигуры.


Значит, я не понял, о чём Вы спрашивали. Процитированный выше вопрос - это вопрос о площади. А на последующие слова я не обратил внимания, поскольку не видел там проблемы (и сейчас не вижу).

X_NU писал(а):
Возможно ли получить некую функцию F(x,y,z) (уравнение, систему уравнений, или нечто другое) с помошью которой можно было бы определить положение каждой точки в пространстве для высечки из парабалоида.
Т.е. чтобы была возможность зная x,y координаты точки возможно было бы найти её z координату.


У нас есть уравнение параболоида $y=\frac{x^2+z^2}{4F}$ и неравенство, определяющее внутренность цилиндра $x^2+(z-R)^2\leqslant R^2$. Если нам задана точка $(x,y)$, то мы можем из уравнения параболоида найти $z_{1,2}=\pm\sqrt{4Fy-x^2}$ (точки существуют, если $4Fy\geqslant x^2$) и проверить, удовлетворяет ли какая-нибудь из точек $(x,y,z_1)$ и $(x,y,z_2)$ неравенству $x^2+(z-R)^2\leqslant R^2$, которое можно упростить до условия $2Fy\leqslant Rz$.

 
 
 
 
Сообщение12.02.2006, 17:41 
Спасибо -- это, по моему, то что я искал.

Возможно ли построить график поверхности полученной высечки из парабалоида (средствами MatCad например). Если это возможно подскажите пожалуйста как. А то у меня почему-то не получается. Парабалоид строится, а как записать неравенство для высечки -- я не знаю.

 
 
 
 
Сообщение14.02.2006, 12:38 
Подскажите пожалуйста.
Возможно ли полученные формулы, для расчёта координат точек перенести в другую систему координат.
То есть необходимо сделать вот что: повернуть существующую систему координат вокруг одной из осей (в нашем случае OZ) на некоторый угол (ось OY), причём, при этом повороте ось системы координат должна совпасть с красной областью на моём рисунке. То есть проходить через самую верхнюю точку высечки из парабалоида.

То что я написал вообще возможно или нет?
Как при этом изменятся формулы?

 
 
 
 Re: Высечка из парабалоида
Сообщение04.11.2015, 10:28 
вообще-то есть класс родственных вашей задач в Бауманке.
1) Найти объем (не поверхность) пересечения параболоида с вертикальным смещенным относительно оси параболоида цилиндром
2)Найти объем пересечения эллипсоида с вертикальным смещенным относительно оси цилиндром
и возможно придумать еще что-то такое...

 
 
 
 Re: Высечка из парабалоида
Сообщение05.11.2015, 08:29 
Сомневаюсь, что автору будет полезно это услышать через 9 лет.
 !  eugrita
Замечание за 1) оффтоп, 2) некропостинг.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group