2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 11:01 
Здравствуйте, уважаемые форумчане!
Столкнулся со следующей задачей о пирамиде:
У правильной пирамиды $PABCD$ с вершиной $P$ проведено сечение через сторону $AB$ и середину бокового ребра $PC$. В каком отношении это сечение делит объем пирамиды?

Мой рисунок:
Изображение

Свои шаги сейчас напишу :-)

-- 29.03.2015, 10:08 --

Итак, поскольку пирамида правильная, то в основе лежит квадрат. Введем обозначения:
$$AB=BC=CD=AD=a$$
$$PA=PB=PC=PD=l$$
Таким образом, объем всей пирамиды:
$$V = \frac{1}{3}a^2\sqrt{l^2-\frac{a^2}{2}}$$

-- 29.03.2015, 10:21 --

Теперь, как я понимаю, нужно найти объем пирамиды $ABFEP$.
В ее основе лежит трапеция $ABFE$.
По условию: $PF=FC=l/2$. Видно также, что $PE=ED=l/2$.
$EF=a/2$ - как средняя линия треугольника $DPC$.

Из треугольника $APD$:
$$\cos{ADP}=\frac{a}{2l}$$

Из треугольника $AED$ по теореме косинусов:
$$AE=\sqrt{a^2+l^2/4-2la/2\cos{ADP}} = \sqrt{\frac{a^2}{2}+\frac{l^2}{4}}$$

-- 29.03.2015, 10:29 --

Высота $LK$ трапеции:
$$LK=\sqrt{AE^2-\frac{a^2}{16}} = \sqrt{\frac{7a^2}{16}+\frac{l^2}{4}}$$
Таким образом, можем уже найти площадь трапеции:
$$S_{ABFE}=\frac{3a}{8}\sqrt{7a^2+4l^2}$$

-- 29.03.2015, 10:34 --

Итак, остается только найти высоту пирамиды $ABFEP$, или, что то же самое, высоту треугольника $LPK$.

Но что-то это все мне кажется очень сложным. Нет ли у вас какой нибудь идеи получше? Как решить задачу более элегантно?

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 12:24 
Поправка:
$$S_{ABFE}=\frac{3a}{16}\sqrt{7a^2+4l^2}$$

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 14:08 
Проведем прямую через точки $P,K$ до пересечения со стороной $DC$ в точке $G$. Фигура под секущей плоскостью составлена из трех пирамид: $ABEFG, AEDG$ и $AFCG.$ Очевидно $ V_{ABEFG}=V_{ABEFP}=x$. Обозначим $V$ -объем исходной пирамиды, $V_0$ -объем пирамиды $AEDG$, тогда $V-x=x+2V_0$ и, следовательно, $x=\dfrac V2 -V_0$. Теперь можно искать нужное нам отношение.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 14:16 
Никакие объемы считать не нужно. Отношение объемов отсекаемой (верхней части) треугольной пирамиды к объему всей пирамиды равно произведению отношений
длин ребер отсекаемой и основной.Отсюда легко находятся отношение объемов двух частей, получаемых от пересечения основной пирамиды плоскостью.
Данную пирамиду нужно разбить на две равных треугольные и использовать вышесказанное.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 14:36 
Если разбить пирамиду пополам вертикальным сечением $PBD$ и взять ближние к нам верхнюю и нижние части, то объём верхней будет в два раза меньше объёма половины исходной пирамиды и, следовательно, равен четверти всего объёма. При этом объём отрезанной верхней части составляет две трети объёма всей верхней (именно в таком соотношении делится трапеция $ABFE$ при проведении в ней диагонали). Итого объём всей верхней части -- три восьмых объёма всей пирамиды и, соответственно, три пятых объёма всей нижней.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 14:40 
Аватара пользователя
Из сравнения площадей оснований при общих высотах имеем $V_{ABED}=\frac12V_{ABPD}$ и $V_{BEFCD}=\frac34V_{BPCD}$.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 15:30 
Медиана $AE$ делит $\bigtriangleup APD$ на два равновеликих. Следовательно, плоскость $ABFE$ делит объём пирамиды пополам.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 16:00 
Аватара пользователя
Skeptic в сообщении #997378 писал(а):
Медиана $AE$ делит $\bigtriangleup APD$ на два равновеликих. Следовательно, плоскость $ABFE$ делит объём пирамиды пополам.

Ага, а карась икру метал, за что его почитают все металлисты! :D
Вы бы, прежде чем бред писАть, потрудились бы почитать написанное перед вами, там уже есть простое и правильное решение, написанное ewert-том.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 16:59 
Но вообще-то разумнее считать совсем иначе. Лучше вообще забить на верхнюю часть -- там требуется определённое напряжение фантазии, в то время как с нижней всё вполне прозрачно и в лоб. Нижняя вертикальными сечениями естественным образом разбивается на три части, центральная из которых представляет из себя положенную на прямоугольный бок треугольную призму, а две крайних объединяются в четырёхугольную пирамидку, причём с ровно тем же прямоугольным основанием, что и призма. Объём пирамидки равен одной трети своего основания на высоту, объём призмы -- одной второй. Итого в сумме пять шестых полуоснования на полувысоту всей пирамиды, т.е. пять двадцать четвёртых полных основания на высоту, т.е. пять восьмых объёма всей пирамиды.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 17:20 
Аватара пользователя
ewert
Зачем же так усложнять?
Но если можно приводить полные решения, то и я своё распишу подробно, хотя мне странно, что это потребовалось (а сразу не хотел, чтоб не привлекать внимание модераторов).

$V_{ABED}=\frac12V_{ABPD}$, поскольку $BE$ -- медиана треугольника $BPD$.
$V_{BEFCD}=\frac34V_{BPCD}$, поскольку $EF$ -- средняя линия треугольника $PDC$.
Следовательно, объём нижней части равен $V_{\text{ниж}}=V_{ABED}+V_{BEFCD}=\frac12V_{ABPD}+\frac34V_{BPCD}=\frac14V+\frac38V=5/8V$.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 17:37 

(Оффтоп)

grizzly в сообщении #997423 писал(а):
$V_{BEFCD}=\frac34V_{BPCD}$

Это слишком сложно, на мой вкус. Это примерно эквивалентно по уровню сложности моему первому варианту, который, как мне кажется, гораздо хуже моего же второго.

Впрочем, на вкус и цвет товарищей нет. Из предложенных здесь подходов вполне разумными мне кажутся также варианты mihiv и redicka (хотя я в них и не вдумывался за леностью). А остановился на своём последнем потому, что он показался мне наиболее тупым (что есть безусловное достоинство).

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение29.03.2015, 17:49 
Аватара пользователя

(Оффтоп)

ewert
Спасибо за пояснение. Когда "сживаешься" со своим решением, оно как-то архивируется (идейно) в понимании и представляется совершенно простым. Так что спорить не буду -- это как раз тот случай, когда лучше доверить мнению со стороны.
Всё собираюсь поднять тему "понимание" в Свободном полёте, чтобы обсудить подобные вопросы.

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение01.04.2015, 06:27 
Аватара пользователя
А вот правильное решение. Нижняя часть без $ACDE=1/4$ равна верхней, поэтому верхняя равна $(1-1/4)/2$

 
 
 
 Re: Сечение пирамиды. В каком отношении делиться объем?
Сообщение01.04.2015, 08:19 
Как вариант: К пирамиде $PABCD$ пристраиваем аналогичную - $P'CDD'C'$. Соединяем $P$ и $P'$. Получим тетраэдр $PP'CD$. Затем рассматриваем, на какие части делит плоскость сечения $ABFE$ объем полученного тетраэдра (при этом имеем в виду, что объем тетраэдра в $2$ раза меньше объема исходной пирамиды). В оконцовке вычитаем из объема пирамиды $P'ABCD$ ненужное.

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group