А кто такой/такая
bayak? Надеюсь, вы не используете меня как средство передачи своего к нему/ней отношения?
То, что я имел в виду, заключается в следущем. Допустим, у нас есть сложная или
много-компонентная, если так правильно будет сказать, механическая система. Например, движение маятника старинных часов, если рассматривать его в СО, связанной с солнцем, много-компонентное, потому что оно состоит из 1) собственных колебаний, 2) вращения Земли вокруг своей оси и 3) вращения её же вокруг солнца. Каждую из этих составляющих, или "фракций", можно описать с помощью
характерных для неё постаянных величин: для фракции 1) таковыми будут период и амплитуда собственных колебаний маятника и т.д. Понятно, что уравнения движения системы можно нормировать. Время
можно записать как
, где
- постоянная размерности
, координату
как
и т.д. Постоянные
назовем нормирующими факторами. После нормализации члены ур-ий становятся безразмерными. Преимущество этого подхода заключается прежде всего в свободе выбора нормирующих факторов. Если, например, характерные постоянные сильно отличаются друг от друга, то правильно выбирая нормирующий фактор, систему уравнений можно привести к системе, которая содержит малый (или большой) параметр, пусть это будет
. Функции, входящие в систему уравнений, можно представить их рядами Тейлора, которые после нормализации превращаются в степенные ряды вида
. Ну а дальше дело техники. Можно приравнивать или группировать коэффициенты при одинаковых степенях возникающих рядов, или же отбрасывать члены рядов, начиная с какой-нибудь степени... как бы там ни было, самым интересным всегда будет оставаться член при
.
Вот, собственно, и всё, что я хотел очень коротко выразить, надеясь на то, что здесь достаточно экспертов, способных сразу понять о чем речь. Моим вопросом было, это ли изучает теория раззмерности (уверен, что не только это), а также как широко применяется этот подход в практике, и прежде всего, в каких областях? Только ли в теорвере? Ясно, что имеет смысл изучить этот вопрос глубже. Достаточно ли тогда прочитать одну книгу, на которые ссылается автор статьи, или нужны обе.