2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
01/01/18 20:50 UTC: Перешли на HTTPS в тестовом режиме. О проблемах пишите в ЛС cepesh.



Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Зорич. Теорема Шредера-Бернштейна.
Сообщение28.01.2015, 19:46 


28/05/12
203
Докажем, что если множества $X,Y,Z$ таковы, что $Z\subset Y\subset X$ и $|X|=|Z|$, то $|X|=|Y|$. Пусть $f:X \to Z$ - биекция. Тогда построим биекцию $g:X\to Y$
$\begin{equation*}
g(x) = 
 \begin{cases}
   f(x) &\text{если $x\in f^n(X)\setminus f^n(Y)$ для некоторого $n \in \mathbb{N}$}\\
   x &\text{иначе}
 \end{cases}
\end{equation*}$
Возьмем множество $X = \mathbb{N}$, $Z=\{ x\in \mathbb{N}| \text{x делится на 4} \}$, $Y=\{ x\in \mathbb{N}| \text{x делится на 2} \}$
$f(x)=4x$, тогда $g(1) = 1$, но $1\notin Y$. У меня уже от упражнений из Зорича мозг взрывается((.

 Профиль  
                  
 
 Re: Зорич. Теорема Шредера-Бернштейна.
Сообщение28.01.2015, 19:55 
Заблокирован по собственному желанию


13/12/05

3475
Это довольно трудная теорема. Возьмите и прочитайте её доказательство где-нибудь еще. В Колморове, Фомине, например.

 Профиль  
                  
 
 Re: Зорич. Теорема Шредера-Бернштейна.
Сообщение28.01.2015, 20:05 


28/05/12
203
Там же другое доказательство. Меня интересует именно это, потому что мне кажется что в Зориче ошибка.

 Профиль  
                  
 
 Re: Зорич. Теорема Шредера-Бернштейна.
Сообщение28.01.2015, 22:25 
Заслуженный участник
Аватара пользователя


06/10/08
5929
А в Зориче натуральные числа с нуля? В данном случае надо учитывать в верхней альтернативе $f^0(X) \setminus f^0(Y) = X\setminus Y$.

 Профиль  
                  
 
 Re: Зорич. Теорема Шредера-Бернштейна.
Сообщение29.01.2015, 19:56 


28/05/12
203
Я правильно понимаю что мы оставляем на месте только элементы $f^n(Y\setminus Z)$?

 Профиль  
                  
 
 Re: Зорич. Теорема Шредера-Бернштейна.
Сообщение29.01.2015, 20:12 
Заслуженный участник


30/01/09
4694
Кстати, тут на форуме были жалобы по поводу доказательства Зоричем этой теоремы. (Однако Зорич многократно переиздаётся.)

 Профиль  
                  
 
 Re: Зорич. Теорема Шредера-Бернштейна.
Сообщение02.02.2015, 13:26 


28/05/12
203
Дочитал Зорича до натуральных чисел, там они начинаются с единицы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group