можно ли передавать усилие, создаваемое тем или способом, в другое место. Если да, то, что за носитель передает это усилие
Чтобы понять ответ, заметьте, что:
1). Если в качестве рычага мы возьмём мягкое, - например, тряпку, верёвку, резинку от трусов и т.п., - то эффекта рычага не получится. Мягкие тела будут легко гнуться и поэтому не послужат нам рычагом.
Если возьмём жёсткое, но тонкое, - например, полосу жести, которую подложим под груз плашмя, - то опять рычага не получится, полоса просто согнётся.
Если же полосу жести поставить ребром, а ещё лучше взять стопку таких полос ребром, то уже может получиться рычаг, т.к. это будет твёрдая, жёсткая конструкция, мало податливая изгибу.
Ага, хорошо: значит, действие рычага связано с понятием
твёрдое тело. Но почему же "твёрдое тело" - твёрдое?
2). На этот вопрос даёт ответ раздел физики, который так и называется - ФТТ (физика твёрдых тел). ФТТ во многом перекликается с квантовой химией: последняя изучает атомное строение молекул; обе науки целиком основаны на квантовой механике, изучающей силы и энергию взаимодействия атомов друг с другом.
Кратко говоря, твёрдое тело можно представлять себе как гигантскую молекулу, состоящую из огромного количества атомов. Ближайшие друг к другу атомы крепко притягиваются, как и в обычной молекуле с небольшим числом атомов. Почему?
А вот почему. Каждый атом имеет положительно заряженное ядро и отрицательно заряженное "электронное облако" (строго такое "облако" описывается квантовой механикой) вокруг ядра. Законы квантовой физики показывают, что электронные облака атомов стремятся определённым образом частично перекрыться, т.к. это сильно понижает их энергию, - вот поэтому между атомами действуют силы притяжения.
В то же время ядра отталкиваются электрической силой Кулона, да и электронные облака отталкиваются друг от друга, если их перекрыть слишком сильно. В итоге, баланс этих сил притяжения и отталкивания фиксирует атомы на чётко определённых расстояниях друг от друга (порядка размеров электронных оболочек самих атомов,
) В простейшем случае получается упорядоченная структура атомов - "кристаллическая решётка"; но бывают и структуры с беспорядком, аморфные, полимеры; древесина это пример очень сложной структуры. Главное: в твёрдом теле атомам в данном положении самим "удобно" находиться; т.е. если заставлять атомы сближаться или раздвигаться, то весьма нехилые силы взаимодействия стремятся возвратить атомы на их места устойчивого равновесия.
Так что, никакие гравитоны здесь ни при чём. Силы между атомами в твёрдых телах это
электрические силы между электронами, а также между ядрами, и между теми и другими, причём описываются они не одной лишь школьной формулой закона Кулона, а более сложным образом - по квантовой теории, (которую студенты изучают только где-то ближе к 3-ему курсу, когда усвоят много необходимой для таких дел математики. В квантовой механике анализу сил предшествует анализ энергии атомов и молекул, а для этого нужно уметь обращаться с "уравнением Шредингера" и с его следствиями).
3) Итак, свойство твёрдых тел сохранять свою форму проистекает из-за внутренних сил, скрепляющих атомы друг с другом. Теперь представьте, что Вы взяли крепкий рычаг, например, стальной лом, и пытаетесь его перегнуть через своё колено. При таком изгибе атомы внутри лома у нижней поверхности лома должны были бы сблизиться, а у верхней поверхности (т.е. дальней от колена) должны были бы раздвинуться. Но при малейшей такой деформации между атомами возникают упомянутые выше возвращающие силы, препятсвующие заметному изгибу лома: лом
сопротивляется изгибу. По аналогичной причине он сопротивляется и растяжению или сжатию.
Заметив всё это, имеем ОТВЕТ:
То же самое происходит и тогда, когда твёрдое тело используют как рычаг. У рычага выбор небольшой: либо согнуться, либо сохранить свою форму, деформировавшись лишь чуть-чуть (в рамках, допустимых пределом прочности материала). Последний случай означает, что, почти сохранив свою форму, рычаг сдвинул или поднял нужный нам груз. Таким образом, "носители", передавшие усилие от конца рычага и от опоры к грузу, это атомы и электрические силы взаимодействия между ними внутри рычага.
Аналогично действует не только рычаг, но и трос - в этих случаях атомы сопротивляются не изгибу, а растяжению твёрдого тела. Трос свит как бы из отдельных
тонких стержней, а они намного более податливы изгибу, чем растяжению; потому что в этом случае при изгибе расстояние между атомами в каждом тонком стержне почти не меняется, а при растяжении изменилось бы сильно. Поэтому, натянув трос за один конец, можно сдвинуть (или поднять, как в случае с лебёдкой) груз, привязанный к другому концу. Передача усилия происходит от атома к атому внутри троса, за счёт межатомных сил взаимодействия, сопротивляющихся деформации - изменению межатомных расстояний.
Закон сохранения энергии, как верно отмечено в посте выше, позволяет давать те же ответы, избегая сложных промежуточных рассуждений об атомах внутри рычага.
(Оффтоп)
А в резинке ситуация другая. Резина состоит из длинных полимерных молекул, типа волокон, которые не прямые, а всячески сильно изогнутые. Силы взаимодействия между разными волокнами слабы (так велит квантовая физика). Потянув резину, мы распрямляем волокна, но почти не меняем межатомные расстояния в волокне. Поэтому резинка весьма слабо сопротивляется и изгибу, и растяжению.
ФТТ изучает свойства тел с микроскопической точки зрения - исходя из квантовых свойств атомов. То же самое упомянутое выше взаимодействие атомов друг с другом ответственно за распространение упругих колебаний в твёрдом теле - звука. Силы между атомами приближённо характеризуются в ФТТ так называемыми "силовыми константами". Через них и через массы атомов вычисляются частоты упругих колебаний и скорость звука в разных направлениях в кристаллической решётке; они измеримы на эксперименте. С другой стороны, с теми же "силовыми константами" связаны разнообразные "коэффициенты упругости" твёрдых тел, которые также измеримы, и изучаются в макроскопическом приближении к твёрдым телам - как к сплошным средам. На макроскопическом подходе основана наука СОПРОМАТ; в ней изучаются, в частности, картины напряжений и деформации в твёрдых телах в различных условиях, в том числе и применительно к рычагам. Всё это затем практически применяется в инженерных расчётах и построении самых разных машин, механизмов...
В целом есть хорошее согласие между всеми этими подходами, и в теориии и в экспериментах, в измерениях, что вызывает у физиков обоснованное удовлетворение и нежелание дискутировать о фантастических домыслах тех, кто избегает серьёзной учебной литературы, сторонится научных знаний.