2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 14:30 


23/04/12

36
Евгений Машеров в сообщении #948238 писал(а):
GrishinSG в сообщении #948230 писал(а):
Для начала не вменять мне своё - "один сомножитель"?
-- 17 дек 2014, 13:39 --как согласуется с
GrishinSG в сообщении #948039 писал(а):
Разве Вы не видите, что в каждом произведении только по одной пераменной?
?
Я сейчас закричу... Рассматриваемые подынтегральные функция есть произведения одной постоянной и одной переменной.
Может больше не надо, а?

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 14:48 
Заслуженный участник


29/11/11
4390
GrishinSG в сообщении #948257 писал(а):
Рассматриваемые подынтегральные функция есть произведения одной постоянной и одной переменной.
Может больше не надо, а?


смысл ваших действий это УМНОЖЕНИЕ подинтегральной функции на дополнительную переменную. независимо от того присутствовала ли такая переменная уже в подинтегральной функции или нет. вы можете взять и проинтегрировать по времени тупо число 5. и получите $5 \Delta t$, произведение

вам нужно найти из скорости путь. вы УМНОЖАЕТЕ скорость на время и получаете путь. но вот вдруг скорость переменная оказалась. тогда вы разбиваете движение на короткие участки, на которых скорость практически не меняется и на каждом из них УМНОЖАЕТЕ скорость на этом участке на его продолжительность и получаете путь на этом промежутке. потом все эти найденные пути суммируете $\sum$ и получаете полный путь, но неточный потому-что на каждом из кусочков скорость все же не была константой. поэтому вместо суммы добавляете значок $\int$ и тем самым обозначаете что вы эти все кусочки пути собираетесь просуммировать и при этом сделать их не просто короткими, а бесконечно короткими. то есть вы сначала находите что на что нужно УМНОЖИТЬ чтобы получить нужный вам результат а потом уже переходите к добавлению значка интеграла к этому ПРОИЗВЕДЕНИЮ

так вот еще раз спашиваю, на каком основании вы решили что умножение одного итого же импульса на скорость $dv$ или на время $dt$ даст одинаковый результат?

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:08 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Если считать, что размерность интеграла равна размерности подынтегральной функции, то как мы интегралами считаем площадь и объем? Интеграл от "высоты" - площадь, интеграл от площади (сечения) - объем. Каждый раз размерность меняется.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:12 


23/04/12

36
Последний раз повторяю - речь идёт не обо мне и не об интегрировании, а о сравнении РЕЗУЛЬТАТОВ интегрирования.
Сравниваются РЕЗУЛЬТАТЫ получения функции, описывающей кинетическую энергию, через количество движения и через импульс силы.
Функции получились разной физической размерности. Почему? Если конкретики нет, то прошу время не отнимать.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:14 
Заслуженный участник


29/11/11
4390
потому-что интегрировать нужно по одной и той же переменной, а не "я тут заметил в функции какую то переменную, давай ка я проинтегрирую тогда по ней". от выбора переменной зависит результат. интеграл это сумма произведений подинтегральной функции на переменную интегрирования. $dx$ в конце ставится именно в смысла "умножить на", а не как какой то абстрактный параметр для значка интеграла

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:25 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
$\int x dx=\frac12 x^2$
$\int x dy = xy \ne \frac 12 x^2$

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:31 
Заслуженный участник
Аватара пользователя


11/03/08
10078
Москва
GrishinSG в сообщении #948257 писал(а):
Я сейчас закричу... Рассматриваемые подынтегральные функция есть произведения одной постоянной и одной переменной.
Может больше не надо, а?


Извините, что делаю Вам больно. Но ни $f(x)$, ни $dx$ не есть постоянные.

-- 17 дек 2014, 15:33 --

GrishinSG в сообщении #948277 писал(а):
Последний раз повторяю - речь идёт не обо мне и не об интегрировании, а о сравнении РЕЗУЛЬТАТОВ интегрирования.
Сравниваются РЕЗУЛЬТАТЫ получения функции, описывающей кинетическую энергию, через количество движения и через импульс силы.
Функции получились разной физической размерности. Почему? Если конкретики нет, то прошу время не отнимать.


Потому, что первый раз Вы посчитали правильно, а второй раз - неправильно.

(Оффтоп)

По поручению капитана Очевидность старшина его роты прапорщик Ясненько.

Ошибка Ваша состояла в неверном выборе переменной интегрирования.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:38 


17/12/14
3
Доброго времени суток уважаемые Форумчане!!!
Полагаю что для физиков этот вопрос будет весьма банален, но я не физик, а вопрос мучает давно :oops:
Как объяснить что два проводника по которому течет переменный ток не притягиваются и не отталкиваются?Или все таки это не так? :facepalm:

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:41 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
MARtik, откройте, пожалуйста, свою тему. Здесь вас не заметят.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 15:58 


23/04/12

36
Как здесь принято на форуме, кто-нибудь из "тузов" посещает вопросную тему?

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 16:39 
Заслуженный участник


29/09/14
1266
Про тузов на форумах ничего не знаю, а отвечу на Ваш исходный вопрос (при том, что и ранее ответы на него уже были даны):

GrishinSG в сообщении #p946456 писал(а):
Количество движения равно импульсу силы. Интеграл от количества движения по скорости - кинетическая энергия.
Да, это верно.

GrishinSG в сообщении #p946456 писал(а):
Интеграл от импульса силы по времени тоже должен быть кинетической энергией. Почему же размерности у них разные получаются?
Потому что здесь утверждение про интеграл абсолютно неверное. В физике верно вот что: интеграл от импульса силы по времени не должен быть кинетической энергией. И разные размерности упомянутых двух интегралов служат лишь одним из подтверждений этого факта.

(Оффтоп)

GrishinSG, если Вас не интересует само вычисление упомянутых интегралов, то дальнейший разговор может быть Вам полезен только в плане выяснения, откуда у Вас возникает ошибочное предположение, будто "интеграл от импульса силы по времени тоже должен быть кинетической энергией". Ведь в физике такого равенства нет и быть не может, если исходить из принятых в физике определений силы, импульса силы и энергии. Никакие тузы этот факт не изменят.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 16:53 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
GrishinSG в сообщении #948295 писал(а):
Как здесь принято на форуме, кто-нибудь из "тузов" посещает вопросную тему?

Мило! До сих пор на вопросы GrishinSG отвечало 7 участников, из них 6 - заслуженные. Не замечала, чтобы на форуме у нас были "Заслуженные в квадрате" или "супер-мены", или еще какие "тузоподобные" участники.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 17:17 
Заслуженный участник


29/09/14
1266
Энергия получится, если интегрировать по времени не импульс силы а мощность, т.е. интегрировать по времени произведение скорости и силы $\mathbf{v} \cdot \mathbf{F}$.

Поэтому весьма вероятно, что вопрос возник у автора из-за путаницы импульса силы с мощностью силы.

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение17.12.2014, 19:48 
Заслуженный участник
Аватара пользователя


11/03/08
10078
Москва
GrishinSG в сообщении #948295 писал(а):
Как здесь принято на форуме, кто-нибудь из "тузов" посещает вопросную тему?


Я не совсем понимаю, кого Вы числите "тузами", но, полагаю, Вы можете к любому из них обратиться личным сообщением, пригласив его сюда. Это, разумеется, не означает, что он откликнется на Вашу просьбу, и тем более не означает, что он с Вами согласится, а не в очередной раз объяснит Вам (попытается объяснить,во всяком случае), что Вы неправы.

-- 17 дек 2014, 20:09 --

А давайте рассмотрим задачу проще. И чтобы интегрирование по разным переменным имело бы физический смысл (во втором Вашем варианте физического смысла, боюсь, нет никакого). Не импульс, а сила.
$\int F(s) ds=E$
$\int F(t) dt=I$
Интегрируя по пройденному расстоянию - получим изменение энергии, по времени - импульса. Размерности, очевидно, разные.
А чтобы почувствовать, отчего другая переменная интегрирования меняет смысл результата, давайте ещё более упростим
$F=\operatorname{const}$
То есть сила F постоянна, не зависит от пути и времени.
Тогда мы видим, что движение становится равноускоренным, и за одинаковое $dt$ проходятся разные $ds$

 Профиль  
                  
 
 Re: Вопросы, которые меня давно мучают
Сообщение21.12.2014, 23:31 


23/04/12

36
Прошла неделя, пять страниц неизвестно чего, а воз и ныне там...
Да ещё мне почему-то запрещали для вычисления кинетической энергии импульс силы
(как произведение силы на время) по времени интегрировать.
Правда, почему нельзя - так не сказали. Просто - "Так и на зубок".
Что ж - "была без радости любовь...".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 67 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Geen


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group