2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача Неймана (Теорема Лакса-Мильграма)
Сообщение14.12.2014, 20:16 
Аватара пользователя
Здравствуйте. Попалась следующая задача, но чувствую, что здесь где-то есть ошибка. Необходимо доказать, что задача Неймана

$$-\Delta u+u=f \quad \text{ на } \Omega $$
$$\frac{\partial u}{\partial n}=0 \quad \text{ на } \partial\Omega $$

имеет единственное решение в классе $H^{1}_0(\Omega)$, если $f\in L^{\infty}(\Omega)$.

Легко показать, что эта задача имеет единственное решение на паре пространств $H^{1},(H^{1})^{*}$. Но известно, что $H^{1}_{0}\subset H^{1}$, а значит $(H^{1})^{*}\subset H^{-1}$, то есть, чтобы гарантировать принадлежность решения $H^{1}_0(\Omega)$, надо иметь более широкое сопряжённое пространство. Но ведь наверняка можно подобрать такое решение, что $f$ -- существенно ограничено, но на границе решение не обнуляется. Я верно размышляю? Подскажите, пожалуйста.

 
 
 
 Re: Задача Неймана (Теорема Лакса-Мильграма)
Сообщение14.12.2014, 21:06 
Аватара пользователя
Если под $H_0^1(\Omega)$ понимается $\{H^1(\Omega):\, u\partial \Omega=0\}$, то это, разумеется неверно, т.к. подразумевает два краевых условия.

-- 14.12.2014, 13:40 --

Oleg Zubelevich в сообщении #946410 писал(а):
что значит условие $\partial u/\partial n|_{\partial\Omega}=0$ для $u\in H^1$ вообще непонятно

Тут есть еще и уравнение, и эту задачу можно понимать в слабом смысле.

 
 
 
 Re: Задача Неймана (Теорема Лакса-Мильграма)
Сообщение14.12.2014, 22:01 
Аватара пользователя
Да, $H^{1}_{0}$ именно так и понимается. Спасибо, еще раз убедился в своей правоте.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group