Задача 1. Игра в чеканку(в оригинале: "Sylver" coinage game, где Sylver - это производная от silver--серебрянный и именем Sylvester--Сильвестер, кто доказал что эта игра конечна)
В игре игроки попеременно называют положительные целые числа, которые не являются линейными комбинациями названых ранее чисел с неотрицательными целыми коэффициентами. Проигрывает тот, кто называет число 1 (и игра при этом заканчивается).
Вопрос: если первый игрок первым ходом называет число 16, и оба игрока играют оптимальным образом, то кто из них выиграет?
P.S. Чеканка здесь подразумевает монетный двор, который для каждого названного игроками числа
выпускает бесконечное количество монет номинала
, а правила игры таким образом сводятся к называнию игроками новых номиналов монет, которые не могут быть разменены без сдачи существующими.
См. также
http://en.wikipedia.org/wiki/Sylver_coinage и
http://userpages.monmouth.com/~colonel/sylver/