2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.



Начать новую тему Ответить на тему
 
 Уравнение с параметром (C5)
Сообщение10.08.2014, 00:38 
Аватара пользователя


20/06/14
236
Здравствуйте, прошу проверить правильность решения и если оно неверно помочь довести до конца.

Условие: Найти все значения параметра $a$ при которых уравнение имеет ровно 8 решений:
$\sin \sqrt{a^2 - x^2}=0$

Решение:
1. $\sin \sqrt{a^2 - x^2} = 0 \iff \sqrt{a^2 - x^2} = \pi n, \quad n \in Z \iff \\ \iff \left(\sqrt{a^2 - x^2}\right) ^2 = \pi^2 n^2, \quad n \in Z$

2. Делаю «картинку»:
http://goo.gl/opb8fo
3. $a^2 \in (9 \pi^2; 16 \pi^2) \iff \begin{cases} a \in (3 \pi; 4 \pi) \\ a \in (-4 \pi; -3 \pi)\end{cases}$

Ответ: $\boxed{ \begin{cases} a \in (3 \pi; 4 \pi) \\ a \in (-4 \pi; -3 \pi)\end{cases}}$

 Профиль  
                  
 
 Re: Уравнение с параметром (C5)
Сообщение10.08.2014, 02:04 
Заслуженный участник


14/03/10
867
Ну вроде все правильно, если, конечно, под
Qazed в сообщении #894814 писал(а):
$\left(\sqrt{a^2 - x^2}\right) ^2 = \pi^2 n^2, \quad n \in Z$
Вы понимаете $\exists n\in\mathbb{Z}\,\,\left(\sqrt{a^2 - x^2}\right) ^2 = \pi^2 n^2$. Кстати, обратите внимание, что символ множества целых чисел пишется как
Код:
\mathbb{Z}

 Профиль  
                  
 
 Re: Уравнение с параметром (C5)
Сообщение10.08.2014, 13:34 
Аватара пользователя


20/06/14
236
Большое спасибо

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group