1. Видел ли эту работу вообще кто-нибудь из специалистов и почему ее абсолютно никто не цитирует?
Я точно помню, что цитировал, и действительно:
http://scholar.google.com/scholar?q=lin ... us/fpm1404 :) Странно, что названия у русской и английской статьи так отличаются. Не знаю, знает ли о ней кто-то из зарубежных специалистов.
Сам я узнал об этой работе вскоре после результата Вассилевской-Вильямс, Д.В.Жданович делал доклад на нашем семинаре. Насколько я знаю, до публикации Вассилевской-Вильямс работа не считалась таким уж серьезным прорывом, потому что идея та же самая, что и у Копперсмита-Винограда, только за счет прогресса в скорости вычислений удалось провести анализ 4 и 8 степени тензора вместо второй. Примерно то же самое говорит Блезер по поводу работы Стотерса:
http://www.scottaaronson.com/blog/?p=839#comment-34668 .
2. С работой что-то не так? (Ну, помимо уровня журнала, в котором она появилась)
Жданович, на мой взгляд, немного переборщил с новой терминологией. Некоторые понятия, которые он вводит, уже рассматривались и как-то называются (емкость тензора - value или
-value, константные отношение - tight subsets of
, ссылок на известную книгу Algebraic Complexity Theory или на поздние статьи Штрассена, где рассматриваются сводимости отношений, нет). А так там все хорошо, теорема 4.1 у Ждановича - это то же самое, что теорема 4.1 у Ле Галла (но Ле Галла значительно проще понять), а после этой теоремы просто идет формулировка и решение задачи оптимизации.
3. И другой вопрос - почему упомянутая Вами работа Ле Галла с
считается лучшей на данный момент, ведь еще в 2012 году (причем на конференции топ-уровня) была представлена работа с
?
На сайте Вассилевской-Вильямс лежит послений вариант статьи
http://theory.stanford.edu/~virgi/matrixmult-f.pdf , там написано, что 2.3727 - это ошибка ПО для оптимизации и фигурирует оценка 2.372873.