т.е. в виде обычной формулы. Вот например это:
Код:
h0approx =
Interpolation[
Flatten[Table[{{sigma = sigmaint (j - 1),
tor = (istart + (i - 1) 0.1) ns}, echoes0[[j, 2]][tor]}, {j, 1,
nsigma + 1}, {i, 1, npoints}], 1]];
zerosig = {{0., g12}}
echoes = Table[{sigma = (2/c) sigmaint j,
samf0 = Table[g12[istart ns + 0.1 i ns], {i, 0, npoints}];
sampan1 =
Table[If[i < 2048, rough0[0.1 (i - 1) ns, sigma],
rough0[0.1 (i - 4197) ns, sigma]], {i, 1, 4196}];
zeroes = Table[0., {i, npoints + 2, 4196}];
samf0extend = Join[samf0, zeroes];
trsamf0extend =
Sqrt[4196] 10^(-10) Fourier[samf0extend,
FourierParameters -> {0, 1}];
trsampan =
Sqrt[4196] 10^(-10) Fourier[sampan1, FourierParameters -> {0, 1}];
prod = Table[trsampan[[i]] trsamf0extend[[i]], {i, 1, 4196}];
conv = (1/Sqrt[4196]) (1/10^(-10)) Fourier[prod,
FourierParameters -> {0, -1}];
pwr = Table[{istart ns + 0.1 i ns, conv[[i]]}, {i, 0, npoints}];
g1 = Interpolation[pwr]}, {j, 1, nsigma}];
echoes2 = Join[zerosig, echoes];
Plot[echoes2[[1, 2]][t], {t, -50 ns, 120 ns}]