В данной теме речь пойдет о введении нового энергомеханического показателя микрочастицы, который можно назвать ее квантовым действием, а также функции квантового поля - вектора плотности-потока квантового действия поля микрочастицы.
Выражение для энергии квантованного волнового пакета фотона или другой частицы имеет вид
Выражение привычно при рассмотрении энергии фотона. В случае же частицы с ненулевой массой покоя величина
является частотой осцилляции релятивистской волновой функции частицы.
Приведенное выражение удобно использовать, когда волновой пакет характеризуется постоянной частотой осцилляции (колебаний), однако оно неприемлемо, если частота изменяется во времени или волновой пакет содержит колебания нескольких частот. Для устранения указанного неудобства предлагается ввести в рассмотрение новую энергомеханическую характеристику волнового поля и его кванта - микрочастицы, являющуюся временным интегралом от плотности энергии и полной энергии частицы. Справедливо и обратное положение - временная производная от квантового действия должка бытьравна энергии частицы. В спектральном пространстве временное интегрирование сводится к делению указанного выражения на частоту
, и величина нового показателя, который условно назовем квантовым действием поля микрообъекта при постоянной частоте равна
Но эта величина справедлива для квантованного поля, если же допустить, что в результате взаимодействия частиц могут появляться неквантованные поля, то их квантовое действие может оказаться не равным
Например, при переходе атомного электрона в новое квантовое состояние имеет место ситуация, когда амплитуда электронного облака постепенно убывает в одном состоянии и увеличивается в другом состоянии. Можно услышать возражение - электрон переходит из одного в другое состояние скачкообразно. Но такая ситуация противоречит теории близкодействия и здравому смыслу. Например, расчеты КЭД показывают, что время жизни возбужденного атомного электрона, спонтанно возвращающегося в основное состояние составляет
сек. Фактически это есть время нарастания волновой функции основного состояния от нуля до квантованного значения под действием электрического поля ядра и случайных вакуумных полей.
Касаясь динамических переменных частиц
и их операторов, заметим, что в случае УКГ они фигурируют в выражениях вида
При этом оператор заряда частицы равняется
, а оператор энергии
. На основании сказанного в начале сообщения об отношении энергии и квантового действия частицы и приведенных операторов заряда и энергии частицы мы можем заключить, что оператор квантового действия с точностью до множителя
совпадает с оператором заряда частицы.
Плотность вероятности обнаружения частицы и плотность потока вероятности хорошо известны для волновой функции Шредингера. Эти распределенные показатели волнового поля соответственно равны
Указанные выражения с точностью до множителя
совпадают с плотностью заряда-тока частицы.
В случае уравнения Клейна-Гордона (УКГ) от комплексной волновой функции выражения для вектора плотности заряда-тока свободной частицы имееют вид
Здесь и далее в релятивистских выражениях принято
Что же касается вектора плотности вероятности - потока вероятности частицы, то их выражения и в этом случае с точностью до знака заряда и множителя
совпадают с вышеприведенными выражениями.
Выражения для тензора энергии-импульса УКГ имеет вид
Для оценки плотности квантового действия - потока действия поля микрочастицы автор предлагает использовать выражение для вектора плотности вероятности - потока вероятности обнаружения частицы, умноженное на
несмотря на то, что не удалось доказать равенства тензорной производной указанной величины тензору энергии-импульса.
Уважаемые участники форума, хотелось бы услышать Ваше мнение по данному вопросу.