Спасибо,
Otta. Можно если я скатаю остальное с учебника как есть чтоб задавать вопросы по ходу? Переводить на русский все это просто гимор.
Let us now assume that our theorem is true for a system of
![$m - 1$ $m - 1$](https://dxdy-03.korotkov.co.uk/f/6/0/a/60ace8ff4d114805b0b0334942a8e20f82.png)
equations in more than
![$m - 1$ $m - 1$](https://dxdy-03.korotkov.co.uk/f/6/0/a/60ace8ff4d114805b0b0334942a8e20f82.png)
unknowns. We shall prove that it is true for
![$m$ $m$](https://dxdy-01.korotkov.co.uk/f/0/e/5/0e51a2dede42189d77627c4d742822c382.png)
equations in
![$n - 1$ $n - 1$](https://dxdy-04.korotkov.co.uk/f/3/e/e/3eeee545b1fbecf1f5a508b7304d7d5c82.png)
unknowns when
![$n > m$ $n > m$](https://dxdy-02.korotkov.co.uk/f/d/9/3/d934387e8f739ff0602a0df914fe7b4a82.png)
. We consider the system [above].
If all coefficients
![$(a_{ij})$ $(a_{ij})$](https://dxdy-01.korotkov.co.uk/f/0/e/1/0e109ac253580f178d2b24994e64e03582.png)
are equal to
![$0$ $0$](https://dxdy-03.korotkov.co.uk/f/2/9/6/29632a9bf827ce0200454dd32fc3be8282.png)
, we can give any non-zero value to our variables to get a solution. If some coefficient is not equal to
![$0$ $0$](https://dxdy-03.korotkov.co.uk/f/2/9/6/29632a9bf827ce0200454dd32fc3be8282.png)
, then after renumbering the equations and the variables, we may assume
that it is
![$a_{11}$ $a_{11}$](https://dxdy-04.korotkov.co.uk/f/3/3/c/33c1772a2ff75b1ffb557dbb4f422b4582.png)
. We shall subtract a multiple of the first equation from the others to eliminate
![$a_1$ $a_1$](https://dxdy-01.korotkov.co.uk/f/8/e/8/8e830a5ab471143f1bb80e525c09bbaa82.png)
. Namely, we consider the system of equations
![$\left(A_2 - \frac {a_{21}}{a_{11}} A_1 \right ) \cdot X = 0$ $\left(A_2 - \frac {a_{21}}{a_{11}} A_1 \right ) \cdot X = 0$](https://dxdy-03.korotkov.co.uk/f/a/d/4/ad4690e6d2aa83ee1376b4e9e09d7fd782.png)
![$\left (A_m - \frac {a_{m1}}{a_{11}} A_1 \right ) \cdot X = 0$ $\left (A_m - \frac {a_{m1}}{a_{11}} A_1 \right ) \cdot X = 0$](https://dxdy-04.korotkov.co.uk/f/3/a/e/3ae0ab6c6091c237bd1c39f30cc2064482.png)
,
Which can be written also in the form
![$(***)$ $(***)$](https://dxdy-03.korotkov.co.uk/f/2/8/3/283c4825c8d2fd3359da54637382225a82.png)
![$A_2 \cdot X - \frac {a_{21}}{a_{11}} A_1 \cdot X = 0$ $A_2 \cdot X - \frac {a_{21}}{a_{11}} A_1 \cdot X = 0$](https://dxdy-03.korotkov.co.uk/f/e/c/c/ecce5122c5a591981573fc33e83fe48882.png)
![$\left(A_m - \frac {a_{m1}}{a_{11}} A_1 \right ) \cdot X = 0$ $\left(A_m - \frac {a_{m1}}{a_{11}} A_1 \right ) \cdot X = 0$](https://dxdy-04.korotkov.co.uk/f/b/8/1/b817e4bcca4037e26cbb70c06e848c0282.png)
In this system, the coefficient of
![$x_1$ $x_1$](https://dxdy-03.korotkov.co.uk/f/2/7/7/277fbbae7d4bc65b6aa601ea481bebcc82.png)
is equal to
![$0$ $0$](https://dxdy-03.korotkov.co.uk/f/2/9/6/29632a9bf827ce0200454dd32fc3be8282.png)
. Hence we may view
![$(***)$ $(***)$](https://dxdy-03.korotkov.co.uk/f/2/8/3/283c4825c8d2fd3359da54637382225a82.png)
as a system of
![$m - 1$ $m - 1$](https://dxdy-03.korotkov.co.uk/f/6/0/a/60ace8ff4d114805b0b0334942a8e20f82.png)
equations in
![$n - 1$ $n - 1$](https://dxdy-04.korotkov.co.uk/f/3/e/e/3eeee545b1fbecf1f5a508b7304d7d5c82.png)
unknowns, and we have
![$n-1 > m-1$ $n-1 > m-1$](https://dxdy-03.korotkov.co.uk/f/e/c/4/ec40a2aea184bc2d6fd9fd92a970c2ce82.png)
.
According to our assumption, we can find a non-trivial solution
![$(x_2, ... ,x_n)$ $(x_2, ... ,x_n)$](https://dxdy-03.korotkov.co.uk/f/2/c/1/2c1c5aaaec28f1ab0ab4e9e16d79fb8582.png)
for this system. We can then solve for
![$x_1$ $x_1$](https://dxdy-03.korotkov.co.uk/f/2/7/7/277fbbae7d4bc65b6aa601ea481bebcc82.png)
in the first equation,
namely
![$x_1 = \frac {-1}{a_{11}} (a_{12}x_2 + \ldots + a_{1n}x_n)$ $x_1 = \frac {-1}{a_{11}} (a_{12}x_2 + \ldots + a_{1n}x_n)$](https://dxdy-02.korotkov.co.uk/f/d/b/7/db7e851a2803ced58d962511b05ad48f82.png)
.
In that way, we find a solution of
![$A_1 \cdot X = 0$ $A_1 \cdot X = 0$](https://dxdy-03.korotkov.co.uk/f/a/f/b/afbdc62a4ae7156e645bedcfa9ea4bb882.png)
. But according to
![$(***)$ $(***)$](https://dxdy-03.korotkov.co.uk/f/2/8/3/283c4825c8d2fd3359da54637382225a82.png)
, we
have
![$A_i \cdot X = \frac {a_{i1}}{a_{11}} A_1 \cdot X$ $A_i \cdot X = \frac {a_{i1}}{a_{11}} A_1 \cdot X$](https://dxdy-03.korotkov.co.uk/f/6/7/7/677cba5af8f61562d2af75b36be4665482.png)
for
![$i = 2, \ldots ,m$ $i = 2, \ldots ,m$](https://dxdy-04.korotkov.co.uk/f/f/f/9/ff93695dbc99bbee517fd190c7db295182.png)
. Hence
![$A_i \cdot X = 0$ $A_i \cdot X = 0$](https://dxdy-04.korotkov.co.uk/f/3/3/d/33d8d1bc01f20033b83c7737b9bdba0082.png)
for
![$i = 2, \ldots ,m$ $i = 2, \ldots ,m$](https://dxdy-04.korotkov.co.uk/f/f/f/9/ff93695dbc99bbee517fd190c7db295182.png)
, and therefore we have found a non-trivial solution to our original system
![$(**)$ $(**)$](https://dxdy-04.korotkov.co.uk/f/f/4/0/f40bbedfaa9266106331853ea75c0de982.png)
. [
![$OP$ $OP$](https://dxdy-01.korotkov.co.uk/f/c/6/b/c6b3a3c810f5ac8f8405a0c4e8cb32c782.png)
] The argument we have just given allows us to proceed stepwise from
one equation to two equations, then from two to three, and so forth.
This concludes the proof.
-----------------------------------------------------------------------------
Пойду-ка я пока поизучаю это док-во. Вернусь с вопросами.