2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Вопрос по теории множеств
Сообщение27.03.2014, 19:40 
Как-то читал, что согласно теории множеств, количество чисел натурального ряда равно количеству, например, четных, так как оба множества бесконечны. И вот, подумалось, в развитие этой интересной мысли, что вообще говоря, любые 2 произвольно взятых числа равны, поскольку количество чисел, которые идут после любого из них -- равно. Из этого следует, что например, 1 = 2 или 1 = 100. Более строго, может быть, это можно выразить так.
Например, берем числа 1 и 2. Какое количество чисел идет после 1 до бесконечности? Бесконечность. После 2-х? Тоже бесконечность. Бесконечность минус бесконечность равно 0. Следовательно, 1 и 2 равны нулю. Доказано.
Правильно ли я рассуждаю?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 19:50 
Аватара пользователя
new_1 в сообщении #841778 писал(а):
Правильно ли я рассуждаю?

Дипломат бы сказал, что Вы рассуждаете контрпродуктивно. (Сейчас это слово модно).

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 19:52 
Аватара пользователя
new_1 в сообщении #841778 писал(а):
Например, берем числа 1 и 2. Какое количество чисел идет после 1 до бесконечности? Бесконечность. После 2-х? Тоже бесконечность.
Не бесконечность, а $\aleph_0$ (счетное количество).
new_1 в сообщении #841778 писал(а):
Бесконечность минус бесконечность равно 0.
Вычитание для мощностей не определено.

new_1 в сообщении #841778 писал(а):
Правильно ли я рассуждаю?
Нет

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 19:52 
new_1 в сообщении #841778 писал(а):
любые 2 произвольно взятых числа равны, поскольку количество чисел, которые идут после любого из них -- равно. Из этого следует, что например, 1 = 2 или 1 = 100.

Бред.
new_1 в сообщении #841778 писал(а):
Правильно ли я рассуждаю?
Как вы можете правильно рассуждать, если вы получили очевидно неверные результаты?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:05 
Nemiroff в сообщении #841798 писал(а):
если вы получили очевидно неверные результаты?

А какое это имеет отношение к правильности и неправильности рассуждений?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:09 
new_1 в сообщении #841809 писал(а):
А какое это имеет отношение к правильности и неправильности рассуждений?

Если вы из правильных посылок получили неправильный результат, значит рассуждали вы откровенно хреново.
Так что либо ваши рассуждения --- бред, либо посылки неверные.

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:14 
Nemiroff в сообщении #841813 писал(а):
получили неправильный результат

Как в общем случае, мы можем определить правильность полученного результата, не прибегая при этом к интуиции и повседневному опыту?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:18 
new_1, очень просто - применяя другие рассуждения, получить из тех же предпосылок или тот же результат, или противоречие с ним.

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:21 
new_1 в сообщении #841778 писал(а):
И вот, подумалось, в развитие этой интересной мысли, что вообще говоря, любые 2 произвольно взятых числа равны, поскольку количество чисел, которые идут после любого из них -- равно.


Это не определение равенства, а определение некоторого нового соотношения $a \circ b$. Далее, вы хотите доказать, что это новое соотношение эквивалентно отношению равенства $a \circ b \Leftrightarrow a = b$. Но ваше доказательство неверно, как указали, бесконечность минус бесконечность это не нуль.

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:23 
mustitz в сообщении #841825 писал(а):
бесконечность минус бесконечность это не нуль.

А что получается в результате этой операции?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:26 
Аватара пользователя
Правильность одного суждения, может, и нельзя проверить. Только связанной системы аксиом и теорем. Результаты new_1 противоречат существующей арифметике. Но, может, он хочет создать свою :mrgreen:

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:28 
provincialka в сообщении #841832 писал(а):
олько связанной системы аксиом и теорем

Вероятно, правильность аксиом проверить в любом случае нельзя?

-- 27.03.2014, 21:31 --

_Ivana в сообщении #841824 писал(а):
применяя другие рассуждения, получить из тех же предпосылок или тот же результат, или противоречие с ним.

Допустим, я получил противоречие. Что это доказывает? Лишь то, что мы имеем 2 корректных рассуждения, ведущих к взаимоисключающим результатам. Только и всего.

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:39 
Аватара пользователя
Вот интересно, сболтнул человек глупость, а мы все сбежались его "просвещать". Стоит ли?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:40 
provincialka в сообщении #841845 писал(а):
Вот интересно, сболтнул человек глупость, а мы все сбежались его "просвещать". Стоит ли?

А Вы уверены, что понимаете тему?

 
 
 
 Re: Вопрос по теории множеств
Сообщение27.03.2014, 20:41 
new_1 в сообщении #841834 писал(а):
Допустим, я получил противоречие. Что это доказывает? Лишь то, что мы имеем 2 корректных рассуждения, ведущих к взаимоисключающим результатам. Только и всего.

Всё, я понял, я пас.

-- Чт мар 27, 2014 21:41:26 --

provincialka в сообщении #841845 писал(а):
Вот интересно, сболтнул человек глупость, а мы все сбежались его "просвещать". Стоит ли?

+1

 
 
 [ Сообщений: 31 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group