2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Куда делось слагаемое?
Сообщение06.02.2014, 00:40 
Здравствуйте! Решал такую задачу: Дана точка $A_0(\overline{r_0})$ и прямая $\overline{N}\cdot\overline{r}+C=0$. Составить уравнение прямой, полученной из данной поворотом ее около точки $A_0$ на угол $90^{\circ}$.
Решаю. Вот чертеж:
Изображение
[реклама удалена]
Дальше будет использоваться такое обозначение:$\overline{a}'$ обозначает вектор, полученный из вектора $\overline{a}$ поворотом в положительном направлении на угол $90^{\circ}$. Итак, как вы уже догадались, у меня точка $P$ - это полюс. Сначала перенесем его в точку $A_0$. Т.к. $\overline{r}=\overline{r_0}+\overline{r_1}$, то уравнение прямой запишется так: $\overline{N}\cdot(\overline{r_1}+\overline{r_0})+C=0$, или $\overlne{N}\cdot\overline{r_1}=-\overline{N}\cdot\overline{r_0}-C$. А т. к. поворот около точки $A_0$ есть движение, то он сохраняет скалярное произведение и можно написать: $\overline{N}'\cdot\overline{r_1}'=-\overline{N}\cdot\overline{r_0}-C$. Теперь остается перенести полюс обратно в точку $P$. При этом $\overline{r_1}'=\overline{r_2}-\overline{r_0}$, а значит, $\overline{N}'\cdot(\overline{r_2}-\overline{r_0})=-\overline{N}\cdot\overline{r_0}-C$, или $\overline{N}'\cdot(\overline{r_2}-\overline{r_0})+\overline{N}\cdot\overline{r_0}+C=0$. Итак, окончательно уравнение искомой прямой будет: $\overline{N}'\cdot(\overline{r}-\overline{r_0})+\overline{N}\cdot\overline{r_0}+C=0$ и все бы ничего, только в ответе $\overline{N}'\cdot(\overline{r}-\overline{r_0})+C=0$ и у кого ошибка: у меня или в книге?

 
 
 
 Re: Куда делось слагаемое?
Сообщение06.02.2014, 00:45 
Аватара пользователя
В книге точно ошибка - понятно, что при повороте прямая с ненулевым $C$ может перейти в прямую с нулевым $C$ (проходящую через точку отсчета). Ваши выкладки не проверял.

 
 
 
 Re: Куда делось слагаемое?
Сообщение07.02.2014, 23:30 
Ладно, спасибо и на этом. Блин, жалко, написать написал, а никто почему-то так и не сказал, а выкладки-то правильные или нет.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group