Вот утверждение и его доказательство:
Let us suppose that probability of success for the treated individual
is
, and
for the untreated. Now, assume that equality
holds for all
and for some
.Therefore:
,with
Now, let us define the pooled multiplier
as
where
and
are average values of
and
, respectively.
Proposition 1. Using the notation given above, the following inequality holds
Proof. Suppose
.
Let
for
.
So
is a strictly increasing function.
Let
, so
.
The inequality of Proposition 1,
means that
.
As it is shown above
, so we can prove Proposition 1 by proving that function
is strictly concave. But
and
is strictly convex for
.
мне совершенно не понятна последняя часть:
"and
is strictly convex for
"
Можете мне её объяснить? Что это и почему это верно?