| 
													Последний раз редактировалось salang 06.01.2014, 08:36, всего редактировалось 2 раз(а).
												
 
 График, конечно, лучше непрерывный, но если на моей машине это будет полдня, тогда пусть будет дискретный. Я совершенно не обижаюсь, мне просто очень нужно расчет осуществить, а не получается   . Следующая итерация тоже не очень.   (Оффтоп) Код: c = 3*10^8;H = 7.2*10^5;
 \[Tau] = 47*10^-6;
 Fd = 7200;
 Tp = 50*10^-6;
 f = 3.5*10^8;
 v = 7500;
 Q = 18000;
 L = 100;
 s2 = 0.003;
 s1 = 2;
 \[CapitalTheta]0 = 0.018;
 m = 256;
 \[Lambda] = 0.022;
 n = 3;
 lm = 25;
 d = 1.2;
 \[Lambda] = 0.022;
 n = 3;
 t = List[ -10^-8, -10^-9, 0, 10^-11, 10^-10, 10^-9, 10^-8, 20*10^-7];
 
 In[1]:= pp[tt_] = Sum[
 NIntegrate [
 Exp[(\[Pi]*Fd^2*Tp^2*(m - Abs[k])^2 *x^2)/H^2 - (
 n^2*\[Pi]^2*d^2*y^2 )/(\[CapitalTheta]0^2*\[Lambda]^2 *H^2*141^2) - (
 100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2*s2^2) - (100*lm^2*y^2*s1^2)/(
 H^2*L^2*\[Pi]^2*s2^2) - (5.55*(y^2 + x^2))/(
 H^2*\[CapitalTheta]0^2) - \[Pi] * (f^2 *(t - k*Tp - x^2/(c*H) - y^2/(
 c*H))^2 +
 2*Q*(v*k*Tp)/(H*d) + \[Tau]^2*((v*k*Tp)/(H*d))^2 )], {x, -Infinity,
 Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40,
 AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]
 
 
 During evaluation of In[1]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))+(Fd^2 (<<1>>)^2 \[Pi] Tp^2 x^2)/H^2-<<1>>-<<1>>-(d^2 <<1>> <<1>> y^2)/(19881 <<2>> \[Lambda]^2)-\[Pi] (-((510 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(65025 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 During evaluation of In[1]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))+(Fd^2 (<<1>>)^2 \[Pi] Tp^2 x^2)/H^2-<<1>>-<<1>>-(d^2 <<1>> <<1>> y^2)/(19881 <<2>> \[Lambda]^2)-\[Pi] (-((508 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64516 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 During evaluation of In[1]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))+(Fd^2 (<<1>>)^2 \[Pi] Tp^2 x^2)/H^2-<<1>>-<<1>>-(d^2 <<1>> <<1>> y^2)/(19881 <<2>> \[Lambda]^2)-\[Pi] (-((506 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64009 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 During evaluation of In[1]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
 
 Out[1]= 511 NIntegrate[
 Exp[(\[Pi] Fd^2 Tp^2 (m - Abs[k])^2 x^2)/H^2 - (
 n^2 \[Pi]^2 d^2 y^2)/(\[CapitalTheta]0^2 \[Lambda]^2 H^2 141^2) - (
 100 lm^2 x^2 s1^2)/(H^2 L^2 \[Pi]^2 s2^2) - (100 lm^2 y^2 s1^2)/(
 H^2 L^2 \[Pi]^2 s2^2) - (5.55 (y^2 + x^2))/(
 H^2 \[CapitalTheta]0^2) - \[Pi] (f^2 (t - k Tp - x^2/(c H) - y^2/(
 c H))^2 + (2 Q (v k Tp))/(
 H d) + \[Tau]^2 ((v k Tp)/(
 H d))^2)], {x, -\[Infinity], \[Infinity]}, {y, -\[Infinity], \
 \[Infinity]}, MaxRecursion -> 40, AccuracyGoal -> 60,
 Method -> "AdaptiveMonteCarlo"]
 
 ListLogPlot[pp[t], {t, -10^(-8), 200*10^(-8)}]
 
 ListLogPlot::nonopt: Options expected (instead of {t,-(1/100000000),1/500000}) beyond position 1 in ListLogPlot[pp[t],{t,-(1/100000000),1/500000}]. An option must be a rule or a list of rules. >>
 
 ListLogPlot[pp[t], {t, -(1/100000000), 1/500000}]
 
 ListLogPlot[Transpose[{t, p}], MaxRecursion]
 
 Transpose::nmtx: The first two levels of the one-dimensional list {t,p} cannot be transposed. >>
 
 ListLogPlot::nonopt: Options expected (instead of MaxRecursion) beyond position 1 in ListLogPlot[Transpose[{t,p}],MaxRecursion]. An option must be a rule or a list of rules. >>
 
 ListLogPlot[Transpose[{t, p}], MaxRecursion]
 
 p[tt_] = Sum[
 NIntegrate[
 Exp[x^2*(\[Pi]*Fd^2*\[Tau]^2*(m - Abs[k])^2)/
 H^2 - (0.00005*n^2*\[Pi]^2*d^2*y^2)/(\[CapitalTheta]0^2*\[Lambda]^2*
 H^2) - (100*lm^2*x^2*s1^2)/(H^2*L^2*\[Pi]^2*s2^2) - (100*lm^2*y^2*
 s1^2)/(H^2*L^2*\[Pi]^2*
 s2^2) - (5.55*(y^2 +
 x^2))/(H^2*\[CapitalTheta]0^2) - \[Pi]*(f^2*(t - k*Tp - x^2/(c*H) -
 y^2/(c*H))^2 +
 2*Q*(v*k*Tp)/(H*d) + \[Tau]^2*((v*k*Tp)/(H*d))^2)], {x, -Infinity,
 Infinity}, {y, -Infinity, Infinity}, MaxRecursion -> 40,
 AccuracyGoal -> 60, Method -> "AdaptiveMonteCarlo"], {k, -255, 255}]
 
 NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((510 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(65025 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((508 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64516 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-<<1>>/<<1>>-<<1>>/<<1>>+(Fd^2 <<3>> <<1>>)/H^2-\[Pi] (-((506 Q Tp v)/(d H))+f^2 (t+Times[<<2>>]+Times[<<4>>]+Times[<<4>>])^2+(64009 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
 
 511 NIntegrate[
 Exp[(x^2 (\[Pi] Fd^2 \[Tau]^2 (m - Abs[k])^2))/H^2 - (
 0.00005 n^2 \[Pi]^2 d^2 y^2)/(\[CapitalTheta]0^2 \[Lambda]^2 H^2) - (
 100 lm^2 x^2 s1^2)/(H^2 L^2 \[Pi]^2 s2^2) - (100 lm^2 y^2 s1^2)/(
 H^2 L^2 \[Pi]^2 s2^2) - (5.55 (y^2 + x^2))/(
 H^2 \[CapitalTheta]0^2) - \[Pi] (f^2 (t - k Tp - x^2/(c H) - y^2/(
 c H))^2 + (2 Q (v k Tp))/(
 H d) + \[Tau]^2 ((v k Tp)/(
 H d))^2)], {x, -\[Infinity], \[Infinity]}, {y, -\[Infinity], \
 \[Infinity]}, MaxRecursion -> 40, AccuracyGoal -> 60,
 Method -> "AdaptiveMonteCarlo"]
 
 ListLinePlot[%, AxesLabel -> {"t", "P(t)"}, PlotStyle -> PointSize[0.01]]
 
 NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] x^2 \[Tau]^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
 
 ListLinePlot::lpn: 511 NIntegrate[Exp[(x^2 (\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>]))/Power[<<2>>]-(0.00005 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<3>>]-(100 Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(100 Power[<<2>>] Power[<<2>>] Power[<<2>>])/Times[<<4>>]-(5.55 Plus[<<2>>])/Times[<<2>>]-\[Pi] (Times[<<2>>]+Times[<<3>>]+Times[<<2>>])],{x,-\[Infinity],\[Infinity]},<<3>>,Method->AdaptiveMonteCarlo] is not a list of numbers or pairs of numbers. >>
 
 In[2]:= ListLogPlot[Transpose[{t, pp[tt_]}]]
 
 During evaluation of In[2]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] Tp^2 x^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 During evaluation of In[2]:= Transpose::nmtx: The first two levels of the one-dimensional list {t,511 NIntegrate[Exp[(\[Pi] Fd^2 Tp^2 Plus[<<2>>]^2 x^2)/Power[<<2>>]-Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-100 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-100 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-5.55 Plus[<<2>>] Power[<<2>>]-\[Pi] Plus[<<3>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]} cannot be transposed. >>
 
 During evaluation of In[2]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] Tp^2 x^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 During evaluation of In[2]:= Transpose::nmtx: The first two levels of the one-dimensional list {t,511 NIntegrate[Exp[(\[Pi] Fd^2 Tp^2 Plus[<<2>>]^2 x^2)/Power[<<2>>]-Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-100 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-100 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-5.55 Plus[<<2>>] Power[<<2>>]-\[Pi] Plus[<<3>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]} cannot be transposed. >>
 
 During evaluation of In[2]:= NIntegrate::inumr: The integrand E^(-((100 lm^2 s1^2 x^2)/(H^2 L^2 \[Pi]^2 s2^2))-(100 lm^2 s1^2 y^2)/(H^2 L^2 \[Pi]^2 s2^2)-(5.55 (<<1>>))/(H^2 \[CapitalTheta]0^2)-<<1>>/<<1>>-\[Pi] ((2 k Q Tp v)/(d H)+f^2 (t+<<3>>)^2+(k^2 Tp^2 v^2 \[Tau]^2)/(d^2 H^2))+(Fd^2 \[Pi] Tp^2 x^2 (m-Abs[k])^2)/H^2) has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,1},{0,1}}. >>
 
 During evaluation of In[2]:= General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>
 
 During evaluation of In[2]:= Transpose::nmtx: The first two levels of the one-dimensional list {t,511 NIntegrate[Exp[(\[Pi] Fd^2 Tp^2 Plus[<<2>>]^2 x^2)/Power[<<2>>]-Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-100 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-100 Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-5.55 Plus[<<2>>] Power[<<2>>]-\[Pi] Plus[<<3>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]} cannot be transposed. >>
 
 During evaluation of In[2]:= General::stop: Further output of Transpose::nmtx will be suppressed during this calculation. >>
 
 During evaluation of In[2]:= ListLogPlot::lpn: Transpose[{t,511 NIntegrate[Exp[\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-Times[<<5>>]-Times[<<5>>]-Times[<<5>>]-Times[<<3>>]-Times[<<2>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]}] is not a list of numbers or pairs of numbers. >>
 
 During evaluation of In[2]:= ListLogPlot::lpn: Transpose[{t,511 NIntegrate[Exp[\[Pi] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>] Power[<<2>>]-Times[<<5>>]-Times[<<5>>]-Times[<<5>>]-Times[<<3>>]-Times[<<2>>]],{x,-\[Infinity],\[Infinity]},{y,-\[Infinity],\[Infinity]},MaxRecursion->40,AccuracyGoal->60,Method->AdaptiveMonteCarlo]}] is not a list of numbers or pairs of numbers. >>
 |