2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Вопрос о существовании периодических решений нелинейных ДУ
Сообщение26.11.2013, 20:52 
Аватара пользователя
Здравствуйте. Столкнулся с такой задачей.

Есть нелинейное ДУ вида $\ddot{x}=f(x,\dot{x},t)$, $x(t)$ -- вещественная функция времени. Нужно найти такие начальные условия $x(0), \dot{x}(0)$, при которых решение этого ДУ будет ограниченным (будет лежать в наперёд заданном интервале значений $\left\Vert x\left(t\right)\right\Vert <x_{max}\forall t\in\mathbb{R}$) и желательно периодическим. Понятно, что в общем случае эта задача неразрешима и вряд ли вообще в большинстве случаев имеет решение. Тем не менее, решить её как-то нужно.

Может быть кто-то знает научные публикации по этой теме на русском или английском языках?

 
 
 
 Re: Вопрос о существовании периодических решений нелинейных ДУ
Сообщение27.11.2013, 12:18 
Для некоторых $f$ это ДУ можно рассматривать как уравнение движения материальной точки под действием потенциальных и диссипативных сил. Можно использовать большой известный материал на эту тему.

 
 
 
 Re: Вопрос о существовании периодических решений нелинейных ДУ
Сообщение27.11.2013, 18:24 
Аватара пользователя
mihiv, да, вот только нужно свести исходное уравнение к лагранжевому виду. А это вряд ли получится.

Вот, один из примеров
$
\ddot{r}=\frac{-n\text{sign}\left(\dot{w}+k\dot{r}\right)+g\sin\left(w+kr\right)+\ddot{w}\left(k\cos\left(w+kr\right)+1\right)}{\cos\left(w+kr\right)+k}$

$g,k,n $ - константы, $k>1$, $w(t)$ -- известная периодическая функция времени (численно заданная).

 
 
 
 Re: Вопрос о существовании периодических решений нелинейных ДУ
Сообщение28.11.2013, 05:50 
Хитрая у Вас задача - наверное только численно что-то можно сделать.

http://www.wolframalpha.com/input/?i=x%27%27%3D-sin%28t%29*cos%28sin%28t%29%2B3x%29
http://www.wolframalpha.com/input/?i=x%27%27%3Dcos%28sin%28t%29%2B3x%29
http://www.wolframalpha.com/input/?i=x%27%27%3D%28cos%281%2B3x%29%2Bsin%28t%29%29%2F%282%2Bcos%28t%29%29 и периодическое решение для простого варианта
http://www.wolframalpha.com/input/?i=x%27%27%3Dcos%281%2B3x%29

Краевая задача - хотелось бы так $x(0)=x(T)=a,x'(0)=x'(T)=b$.
Можно построить семейство поверхностей при разных $T$ вида $F(a,b)=(a-x(T))^2+(b-x'(T))^2$, здесь $x(t)$ - численное решение задачи Коши при начальных данных $x(0)=a,x'(0)=b$. В Маткаде искал нули подобной функции для уравнения типа Матье - в принципе удавалось найти периодические решения.

 
 
 
 Re: Вопрос о существовании периодических решений нелинейных ДУ
Сообщение29.11.2013, 12:19 
Изменим исходное уравнение, добавив в правую часть дополнительное слагаемое: $(1-\frac 1k)\ddot w$. Интересно, что для этого нового уравнения можно найти серию периодических решений, т.к. после введения новой неизвестной функции $u=kr+w(t)$ получим для нее уравнение:$$\ddot u=k\dfrac {-n\text {sign}\dot u+g\sin u+\ddot w(k\cos u+1)}{\cos u+k}+k\ddot w$$Это ДУ имеет очевидно серию решений: $u=(2l+1)\pi , l=0,\pm 1,\dots $, или, возвращаясь к функции $r, r(t)=\dfrac {(2l+1)\pi }k-\dfrac {w(t)}k$

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group