Nemiroff писал(а):
Это чудесно, но не имеет отношения к теореме Гёделя.
Ну, да, вроде, неполнота Абсолютной геометрии не следует из теоремы Геделя, но, все же, эта неполнота есть.
AndreUT писал(а):
а что такое формальная теория, арифметика, и разницу между ними, мне еще надо выяснить ... я буду искать более четкую формулировку теоремы и разбираться с базовыми понятиями.
Можете попробовать посмотреть соответствующие статьи в Википедии – у меня сложилось впечатление, что математические статьи из нее достаточно хорошо сочетают строгость и понятность. Кроме того, в начале темы давали ссылки. Успехов!
---
Для интересующихся напишу еще пару слов о том, является ли геометрия Евклида формальной теорией. Сам Евклид в своих «
Началах» был далек от формализма, формулируя аксиомы гораздо более туманнее, чем они формулируются сейчас. Например, «Точка есть то, что не имеет частей» (букв, «Точка есть то, часть чего ничто»), «Линия — длина без ширины», «Края же линии — точки», «Прямая линия есть та, которая равно лежит на всех своих точках». Цивилизованную формулировку геометрических аксиом можно найти, например, если мне не изменяет память, в «Высшей геометрии» Ефимова. То есть какая-нибудь гильбертовская аксиоматизация геометрии должна быть формальной (независимой от (семантической) интерпретации), поскольку О. Блюменталь сообщал, что уже в 1891 году Гильберт, обсуждая работу Г. Винера о роли теорем Дезарга и Паппа, о которой тот докладывал на одном из математических собраний, сделал свое знаменитое замечание, в двух словах передающее суть аксиоматического метода: «Следует добиться того, чтобы во всех геометрических утверждениях слова
точка, прямая, плоскость можно было заменить словами
стол, стул, кружка».