2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение27.10.2013, 21:17 
Всё таки ошибся я.
Поищу ошибку.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение27.10.2013, 21:22 
Аватара пользователя
Так чего искать? Второе уравнение будет $x-y-z=-1$, а не $...=1$.
В этих задачах надо быть очень внимательным.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение27.10.2013, 21:35 
VAL в сообщении #781037 писал(а):
Два других уравнения срединных перпендикулярных плоскостей, скажем, к $M_1M_2$ и $M_1M_3$.

Можно и так; в сравнении с тупо приравниванием расстояний -- по количеству операций примерно баш на баш и выходит.

gris в сообщении #781038 писал(а):
Подставляем хоть в первое:

Не надо ничего никуда подставлять. Надо (в любом случае придётся) тупо решать систему из трёх линейных уравнений. Каким способом -- уже не принципиально.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 00:03 
nikvic в сообщении #781040 писал(а):
Для начала автору нужно определиться с видом "уравнения окружности" в 3-х мерном случае. Штука-то явно искусственная - обычно пространственную кривую задают как пересечение двух поверхностей.

Тут вся публика не может определиться, а Вы хотите чтобы ТС.....
Во-первых, задача имеет не единственное решение.В том смысле, если окружность задавать системой, то систем может бесконечно много.
Существует бесконечно много пар сфер, которые пересекаются по искомой окружности и каждая пара будет уравнением искомой окружности.
А также пересечение плоскости и сферы (плоскость, естественно, одна, содержащая три заданные точки)
Параметрические уравнения определяют искомую окружность "однозначно" с точностью до вращения вокруг центра в плоскости трех заданных точек.
Задача учебная, так что решение выкладывать нельзя. Скажу только, что радиус искомой окружности равен трем, а центр находится в точке (1;1;1)

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 00:12 
forexx в сообщении #781108 писал(а):
Во-первых, задача имеет не единственное решение.

Единственное. Если, конечно, задачка вообще имеет смысл (т.е. если те три точки не лежат на одной прямой; но в противном случае задачка и вообще никакого смысла не имеет).

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 00:49 
Аватара пользователя
ewert в сообщении #781109 писал(а):
Единственное. Если, конечно, задачка вообще имеет смысл (т.е. если те три точки не лежат на одной прямой; но в противном случае задачка и вообще никакого смысла не имеет).

Единственная окружность, но не единственная запись. Например, можно двигать центр вдоль прямой, перпендикулярной плоскости. Соответствующая сфера в пересечении с плоскостью трех точек даст ту же окружность. Но, конечно "естественным" будет уравнение, в котором центр сферы лежит в плоскости окружности.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 01:51 
Leroy999 в сообщении #781035 писал(а):
Я приравнял первое уравнение ко второму, первое к третьему, второе к третьему
И зря, кстати. Если первое равно второму, а второе третьему, то первое уж явно будет равно третьему — вы получаете в принципе систему с одним лишним уравнением.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 06:38 
Аватара пользователя
Задача решается несложно, только надо быть внимательным. Уж коли прямая как множество равных расстояний есть, то можно найти на ней минимум этого расстояния.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 09:58 
$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2
, то 1 уравн. не верно(другие тоже наверное). выходит
$(3-x)^2+(-1-y)^2+(2-z)^2=r^2$
Если дальше расписать, то другие цифорки получаются. Хотя, может быть я ошибаюсь.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 10:55 
Аватара пользователя
sudo в первом уравнении у ТС неправильно подсчитан свободный член ( если он не исправил то, что написано в первом посте). А что, вы уже с композицией разобрались? Может, стоит туда усилия направить? Вы правда в 6 классе?

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 11:12 
provincialka

(Оффтоп)

Эээ, каждому столько лет, на сколько он себя чувствует.
По-моему, вполне реальная оценка. :wink:

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 11:47 
Не только свободный член.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 20:16 
День второй.
Я не на столько хорошо разбираюсь в аналит. геометрии, что бы видеть столько вариантов решения. Задача простая - Составить уравнение окружности, проходящей через три заданные точки.
Вот они:

М1($3, -1, -2$), М2($1, 1, -2$), М3($-1, 3, 0$);

Ответ я должен получить в виде системы из двух уравнений:

$(x-2)^2+y^2+(z-3)^2=27$
$x+y-2=0$

Решил всё пересчитать заново.
Сначала получаю систему из трех уравнений.

$(3-a)^2+(-1-b)^2+(-2-c)^2=R^2$
$(1-a)^2+(1-b)^2+(-2-c)^2=R^2$
$(-1-a)^2+(3-b)^2+c^2=R^2$

Раскрыл скобки.

$9-6a+a^2+1+2b+b^2+4+4c+c^2=R^2$
$1-2a+a^2+1-2b+b^2+4-4c+c^2=R^2$
$1+2a+a^2+9-6b+b^2+c^2=R^2$

Приравнял первое к третьему и второе к третьему.

$14-6a+a^2+2b+b^2+4c+c^2=10+a^2+b^2+c^2+2a-6b$
$6-2a+a^2-2b+b^2-4c+c^2=10+a^2+b^2+c^2+2a-6b$

Упрощаю

$14-6a+2b+4c-10-2a+6b=0$
$6-2a-2b-4c-10-2a+6b=0$

Ещё проще

$4-8a+8b+4c=0$
$-4-4a+4b-4c=0$

Поделил на 4 оба уравнения:

$1-2a+2b+c=0$
$-1-a+b-c=0$

Что мне сделать с этой системой уже?))

Если сделать сложение уравнений из последней системы то получу $a=b$

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 20:28 
Аватара пользователя
Leroy999 в сообщении #781449 писал(а):
М1(3, -1, -2), М2(1, 1, -2), М3(-1, 3, 0);
Leroy999, точки тоже оформляйте $\TeX$ом, иначе попадёте в Карантин.

 
 
 
 Re: Составить уравнение окружности по трём точкам.
Сообщение28.10.2013, 20:33 
Leroy999 в сообщении #781449 писал(а):
Что мне сделать с этой системой уже?))

Задуматься. Какой тип кривой (поверхности) задает эта система.
Вспомнить. Вас предупреждали про геометрическое место точек, равноудаленных от трех данных.
Озадачиться: в какой плоскости лежит окружность.
Собрать информацию в кучу и найти ее (окружности, не кучи) центр.
Потом думать дальше.

 
 
 [ Сообщений: 41 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group