2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Максимальность
Сообщение12.09.2013, 21:41 
Ward в сообщении #763301 писал(а):
Может же!?
Может или не может, не знаю. Знаю одно:
$f(k-1) \le f(k) \ge f(k+1)$ - Необходимое условие для максимума. Недостаточное, конечно, таких k может быть одно, может тысячи. Но это абсолютно необходимое условие.
И как получили такое выражение для квадратного уравнения...

 
 
 
 Re: Максимальность
Сообщение12.09.2013, 21:56 
Аватара пользователя
Зачем такие сложности? Пусть $x_k=\frac{k^2}{1,001^k}$. Записываем неравенство $x_k<x_{k+1}$, т.е. $\frac{k^2}{1,001^k}<\frac{(k+1)^2}{1,001^{k+1}}$, оно равносильными преобразованиями (с учетом целочисленности k) сводится к виду $0\le k<\sqrt{1001000}+1000$. Последнее число лежит между $2000$ и $\sqrt{1002001}+1000=2001$.
Итак, искомое неравенство выполняется для всех $0\le k\le 2000$.

Получаем цепочку неравенств $x_0\le x_1\le x_2\le ... \le x_{2000}\le x_{2001} \ge x_{2002}\ge x_{2003}\ge ...$
Значит, $x_{2001}$ - максимальное значение.

 
 
 
 Re: Максимальность
Сообщение12.09.2013, 22:20 
provincialka в сообщении #763316 писал(а):
Зачем такие сложности?
Какие сложности?
provincialka в сообщении #763316 писал(а):
оно равносильными преобразованиями
Ага, квадратное.
А двойное неравенство было, чтобы рассеять все сомнения топикстартера.
Я не сомневался, что Вы решите.
Или Вы не ко мме обращались?

 
 
 
 Re: Максимальность
Сообщение12.09.2013, 23:22 
Аватара пользователя
Shadow Нет, не к вам. Когда я начинала набирать текст, вашего сообщения еще не было.

 
 
 
 Re: Максимальность
Сообщение12.09.2013, 23:58 
provincialka, прошу извинить меня. Я неправильно понял.

 
 
 
 Re: Максимальность
Сообщение13.09.2013, 00:34 
Аватара пользователя
Да нет, это я виновата. Надо хоть обращение ставить. Кроме того, перед сохранением ответа появляется предупреждение о новых сообщениях, я его проигнорировала.
Да ладно, задача того не стоит.













Да нет, это я виновата. Ведь перед сохранением ответа на

 
 
 
 Re: Максимальность
Сообщение13.09.2013, 09:44 
Аватара пользователя
Производная не понадобится, если прислушаетесь к
mihailm в сообщении #763267 писал(а):
посмотрите на отношение этих величин при $k$ и $k+1$


(Оффтоп)

Пока бегал суп выкипивший с плитки снимать, всё и закончилось

 
 
 [ Сообщений: 22 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group