2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Уравнение с комплексными числами
Сообщение07.09.2013, 10:28 
Аватара пользователя
Решить уравнение: $z+|z+1| +i = 0.$

Хотелось решить геометрически, но не могу представить себе картинку. Делал так:
перепишем $|z+1| = -z - i$. Слева действительное число, справа комплексное. Равенство возможно лишь в случае, когда $z  = x - i, ~x \in \mathbb{R}$. Подставляем, получаем квадратное уравнение с корнями $x = -1, ~ x = -2.$. Но почему-то $ x =-2$ не подходит. Интересно как так вышло, и годно ли решение?

Нечто похожее было у Ktin'ы

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 10:30 
Dosaev в сообщении #761278 писал(а):
Подставляем, получаем квадратное уравнение с корнями $x = -1, ~ x = -2.$
Напишите это уравнение, посмотрим, какое оно квадратное.

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 10:36 
Аватара пользователя
$|x-i +1|  = -x$
$|x-i +1| = |(x+1) - i| = \sqrt{(x+1)^2 +1} = -x \Longrightarrow x= -1.$
Спасибо, nnosipov :D.

(Оффтоп)

Нет, чтобы перепроверить, а :facepalm:

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 12:26 
Аватара пользователя
А вот еще одно:
$$
\cos z = \frac{3+i}{4}$$
1 метод:
$\cos z = \frac{e^{iz} + e^{-iz}}{2}$
Умножить обе части на $e^{iz}$ и сделать замену $e^{iz} = t$. Но получается квадратное уравнение $2t^2 - (3+i)t + 2 = 0$, которое имеет $D = (3+i)^2 - 16 = -8+6i. $ Извлечь корень из комплексного числа конечно можно, но он получается некрасивый. :-(
2 метод:
$z = x + iy$
$\cos z = \cos  x \ch y - i\sin x \sh y = \frac{3}{4} + \frac{i}{4} ~ \Leftrightarrow$
$$
\begin{cases}
\cos  x \ch y = \frac{3}{4},&\\
\sin x \sh y = - \frac{1}{4}
\end{cases}
$$
Это системка мне не по силам.
Что делать?

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 12:31 
Dosaev в сообщении #761305 писал(а):
Извлечь корень из комплексного числа конечно можно, но он получается некрасивый. :-(

Во первых, раз можно, то и нужно; более того, иначе просто никак. Во-вторых, он получается как раз вполне себе красивый.

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 12:36 
Dosaev в сообщении #761305 писал(а):
Извлечь корень из комплексного числа конечно можно, но он получается некрасивый. :-(
Не страдайте попусту. Красивый, некрасивый --- какая разница, лишь бы правильный.
Dosaev в сообщении #761305 писал(а):
Это системка мне не по силам.
Ну и чёрт с ней, решайте 1-м способом.

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 13:06 
Аватара пользователя
Не знаю, может я что-то делаю неправильно, но у меня получились следующие корни из $z = -8 + 6i$:
$$z_{1,2} =  \pm \sqrt{10}(1 + 3i )$$
Как находил: $arg(z) = \varphi$. Если нарисовать, то видно, что $\cos \varphi = - \frac{4}{5} ~ \Rightarrow ~ \cos \frac{\varphi}{2} = \sqrt{\frac{1-\frac{4}{5}}{2}} = \frac{1}{\sqrt{10}} ~ \Rightarrow ~ \sin \frac{\varphi}{2} = \frac{3}{\sqrt{10}}$. Тогда первый корень равен $z_1 = 10 (\frac{1}{\sqrt{10}} + i \frac{3}{\sqrt{10}}) = \sqrt{10}(1 + 3i )$. Ну а второй корень это такой же только с противоположным знаком (так как прибавляется только $\pi$).
И при подстановке в корни исходного уравнения тем не менее получается неверно. :-(

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 13:10 
Dosaev в сообщении #761316 писал(а):
Как находил: $arg(z) = \varphi$.

Не надо никак находить никаких аргов. Надо тупо решить систему из двух уравнений $(x+iy)^2=-8+6i$, она автоматически сведётся к биквадратному с хорошими (в данном случае) корнями.

Да, а где Вы приобрели лишнюю десятку -- сами подумайте.

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 13:12 
Для извлечения квадратных корней тригонометрическая форма не обязательна. Но можно, конечно, и так, как у Вас. Только опечаток делать не надо.

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 13:16 
Аватара пользователя
Вы когда выписываете $z_1$ почему-то забываете извлечь корень и из модуля комплексного числа.

 
 
 
 Re: Уравнение с комплексными числами
Сообщение07.09.2013, 13:29 
Аватара пользователя
SpBTimes в сообщении #761342 писал(а):
Вы когда выписываете $z_1$ почему-то забываете извлечь корень и из модуля комплексного числа.

Ааа, все, вот теперь красиво! :-)
Спасибо всем!

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group