Доказать, что существуют такие коэффициенты

что для всех

выполняется равенство
![$m[x^2]+\Big[ m \{ x^2 \} \Big]+\Big[ n \{ x \} \Big]=m[x]^2.$ $m[x^2]+\Big[ m \{ x^2 \} \Big]+\Big[ n \{ x \} \Big]=m[x]^2.$](https://dxdy-03.korotkov.co.uk/f/e/8/a/e8a13af15349287b89a37b89bf7cd2da82.png)
Перепишем равенство
![$\Big[ m \{ x^2 \} \Big]+\Big[ n \{ x \} \Big]=m([x]^2-[x^2])$ $\Big[ m \{ x^2 \} \Big]+\Big[ n \{ x \} \Big]=m([x]^2-[x^2])$](https://dxdy-02.korotkov.co.uk/f/9/2/6/92661e6d6f1d6bb5f1fb165f12e19a3082.png)
Поскольку
![$\Big[ m \{ x^2 \} \Big]\ge 0 $\Big[ m \{ x^2 \} \Big]\ge 0](https://dxdy-01.korotkov.co.uk/f/c/7/9/c79e5f3cab4ad75cf02f1195875094fe82.png)
,
![$\Big[ n \{ x \} \Big]\ge 0 $\Big[ n \{ x \} \Big]\ge 0](https://dxdy-04.korotkov.co.uk/f/b/6/a/b6a5e6a6efbf465ece50901d0f3458a082.png)
и

,
![$[x]^2-[x^2]\le 0$ $[x]^2-[x^2]\le 0$](https://dxdy-04.korotkov.co.uk/f/3/8/b/38bf8d722d9ec84a8c75931446d22b3c82.png)
то равенство возможно, если
![$\Big[ m \{ x^2 \} \Big]=0$ $\Big[ m \{ x^2 \} \Big]=0$](https://dxdy-03.korotkov.co.uk/f/6/e/1/6e1c125106e8aaa9a11893a4a91d99b682.png)
,
![$\Big[ n \{ x \} \Big]=0$ $\Big[ n \{ x \} \Big]=0$](https://dxdy-01.korotkov.co.uk/f/0/9/f/09ffbaebcfddf502c6a2e0d15219a42882.png)
и
![$m([x]^2-[x^2])=0$ $m([x]^2-[x^2])=0$](https://dxdy-04.korotkov.co.uk/f/b/9/f/b9fe75cbeadd4ae5989a6582451795aa82.png)
Так как при

все таки
![$[x]^2-[x^2]<0$ $[x]^2-[x^2]<0$](https://dxdy-03.korotkov.co.uk/f/6/1/5/615de4adc7ebb3b5df882185dc7ddd5682.png)
, то

Так как

, то

Случай

невозможен.
-- Ср июл 17, 2013 08:16:28 --Может разумно переставить местами члены
![$m[x^2]$ $m[x^2]$](https://dxdy-01.korotkov.co.uk/f/4/2/c/42ceb96feb8f1d716a18b3f583a1013582.png)
и
![$m[x]^2$ $m[x]^2$](https://dxdy-01.korotkov.co.uk/f/8/3/6/8366457a045ffe58a8b0d5a79968151982.png)
?
Тогда, при
![$x\in (0,1]$ $x\in (0,1]$](https://dxdy-02.korotkov.co.uk/f/1/6/c/16c7932106ada08ce78e5fdb51fb42fa82.png)
имеем
![$[x^2]-[x]^2=0$ $[x^2]-[x]^2=0$](https://dxdy-04.korotkov.co.uk/f/7/c/5/7c5ef9ea6b0e0d4bbf6a7c93e726625f82.png)
и величины

и

пробегают значения

.
Значит опять
![$\Big[ m \{ x^2 \} \Big]=0$ $\Big[ m \{ x^2 \} \Big]=0$](https://dxdy-03.korotkov.co.uk/f/6/e/1/6e1c125106e8aaa9a11893a4a91d99b682.png)
и
![$\Big[ n \{ x \} \Big]=0$ $\Big[ n \{ x \} \Big]=0$](https://dxdy-01.korotkov.co.uk/f/0/9/f/09ffbaebcfddf502c6a2e0d15219a42882.png)
, откуда

и

.
Но тогда при всех

будет
![$\Big[ m \{ x^2 \} \Big]=0$ $\Big[ m \{ x^2 \} \Big]=0$](https://dxdy-03.korotkov.co.uk/f/6/e/1/6e1c125106e8aaa9a11893a4a91d99b682.png)
и
![$\Big[ n \{ x \} \Big]=0$ $\Big[ n \{ x \} \Big]=0$](https://dxdy-01.korotkov.co.uk/f/0/9/f/09ffbaebcfddf502c6a2e0d15219a42882.png)
. Тогда опять выходит
![$m=\frac{\Big[ m \{ x^2 \} \Big]+\Big[ n \{ x \} \Big]}{[x^2]-[x]^2}=0$ $m=\frac{\Big[ m \{ x^2 \} \Big]+\Big[ n \{ x \} \Big]}{[x^2]-[x]^2}=0$](https://dxdy-02.korotkov.co.uk/f/d/6/a/d6a4f33281e46a4ac1d29da7073ab79582.png)