2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Maple: как подобрать коэффициенты многочлена?
Сообщение25.04.2013, 15:48 
Аватара пользователя
Типичный пример: $\frac{ax^2+bx+c}{(x-x_1)(x-x_2)(x-x_3)}$ нужно представить в виде $$\frac{A_1}{x-x_1}+\frac{A_2}{x-x_2}+\frac{A_3}{x-x_3}\eqno(1)$$.
Приходим к выражению $$ax^2+bx+c=p_1x^2+p_2x+p_3 \eqno(2)$$, где $p_i$ - коэффициенты после приведения к общему знаменателю выражения (1), содержащие неизвестные $A_i$. (Просто я тут не расписываю эти коэффициенты)

Дальше нужно, не выписывая вручную уравнения $a=p_1$, $b=p_2$, $c=p_3$, командами Maple получить значения $A_i$. Как?

Для порядка многочленов 2 или даже 3 можно вручную это сделать пару раз. Но когда много раз и порядки намного выше - слишком долго. Должны быть инструменты в Maple для таких задач. Уравнение (2) может быть можно решить командой solve со специальной директивой, указывающей переменную, при степенях которой нужно собирать и вычислять коэффициенты?

-- 25.04.2013, 16:55 --

Похоже нашёл: это директива identity.
solve(identity(3/(x^2+4*x+4) = A*(x+B)^P, x), [A,B,P]);
[[A = 3, B = 2, P = -2]]

 
 
 
 Re: Maple: как подобрать коэффициенты многочлена?
Сообщение15.05.2013, 20:51 
Зачем так сложно - вамнужно разложить рациональнуюдробь на елементарные дроби. Для етого есть специальная команда

Код:
A:=(2*x^2+3*x+4)/((x-1)*(x-2)*(x-3)):convert(A, parfrac,x);


$$
-18\, \left( x-2 \right) ^{-1}+{\frac {31}{2}}\, \left( x-3 \right) ^{
-1}+9/2\, \left( x-1 \right) ^{-1}
$$

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group