2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 19:18 
Помогите посчитать интеграл
я начала с интегрирования по частям - это правильно?

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 20:00 
Аватара пользователя
Правильно, но так делать не нужно. Интеграл весь, целиком, как есть, выражается через одну специальную функцию, о которой Вы, может быть, что-то слышали.

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:05 
Даже нет никаких предположений! может намекнете?

-- Ср мар 27, 2013 21:08:55 --

Стоп! Может интеграл равен $B(\alpha+1,\beta)$?

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:10 
Аватара пользователя
Охотно. Смотрите, у Вас на той странице в знаменателе такая большая буква - "B" и потом что-то в скобочках. А что же это значит? Может, просто так закорючка? Или всё-таки со смыслом?

-- Ср, 2013-03-27, 22:10 --

Цитата:
Может интеграл равен $B(\alpha+1,\beta)$?
Вот именно!

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:12 
Полностью ответ будет $\frac {B(\alpha+1,\beta)}{B(\alpha,\beta)}$
но мне нужно посчитать без бета функций - а выразить с помощью $\alpha, \beta$

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:18 
Аватара пользователя
Ну да, так и будет. Нравится? Нет? Почему?

-- Ср, 2013-03-27, 22:18 --

Ага! Так вот, бета функцию можно выразить...

-- Ср, 2013-03-27, 22:18 --

...через...

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:19 
сейчас попробую через гамма-функцию выразить)

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:20 
Аватара пользователя
Вы всё с самого начала знали и морочили нам голову! :lol:

 
 
 
 Re: Найти математическое ожидание бета-функции.
Сообщение27.03.2013, 21:25 
та я просто начала интегрировать по частям - хорошо, что вы меня натолкнули в другую сторону)
огромное вам спасибо!!!!!!

 
 
 [ Сообщений: 24 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group