2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.



Начать новую тему Ответить на тему
 
 Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 11:03 


25/10/09
832
Верно ли я построил? (или нужно что-то еще отметить или отмечено что-то лишнее?)?

1) $y=\dfrac{1}{x^2}$

Изображение

2) $y=e^{\frac{1}{x}}$

Изображение

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 11:25 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Характер стремления к бесконечности всегда одинаковый (на глаз): уходит куда-то вверх, и с концами.
Характер стремления к нулю бывает разный, и это видно. Надо как-то отразить.

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 12:40 
Заслуженный участник
Аватара пользователя


23/08/07
5494
Нов-ск
integral2009 в сообщении #689451 писал(а):
или отмечено что-то лишнее?

Стрелки лишние, что они там делают?

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 13:41 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории

(Оффтоп)

Стрелочки своим бесстрастным языком рассказывают нам о драме исследования. "Я туда ходи, а там - ВАХ! - сапсем большой функций, пропадай нада."

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 17:45 


25/10/09
832
ИСН в сообщении #689457 писал(а):
Характер стремления к бесконечности всегда одинаковый (на глаз): уходит куда-то вверх, и с концами.
Характер стремления к нулю бывает разный, и это видно. Надо как-то отразить.

Спасибо. А как это можно отразить?

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 19:01 
Заслуженный участник


11/05/08
32166
integral2009 в сообщении #689584 писал(а):
А как это можно отразить?

Нарисовать так, чтобы наклон графика в нуле слева был или откровенно нулевой, или откровенно бесконечный, или явственно ни тот, ни другой.

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 19:39 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Должно быть похоже на одно из этих:
Изображение

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение01.03.2013, 19:52 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Я бы ещё острожно добавил, что надо и горизонтальные асимптоты уважать и как-то их обозначаить. А то на втором графике не очень чтобы.

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение02.03.2013, 03:33 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
А я бы ещё осторожно посоветовал уважаемому топикстартеру найти какое-нибудь средство для рисования графиков, а то это его рукодрыжество ну никак на график не похоже. Со своей стороны могу посоветовать Wolfram Mathematica.

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение02.03.2013, 20:03 


25/10/09
832
ИСН в сообщении #689635 писал(а):
Должно быть похоже на одно из этих:
Изображение


Спасибо, а вот как именно -- через вторые производные можно узнать, проверив выпуклость/вогнутость? или есть иные способы?

 Профиль  
                  
 
 Re: Эскиз графика в окрестности предельной точки
Сообщение02.03.2013, 20:44 
Заслуженный участник


11/05/08
32166
Aritaborian в сообщении #689934 писал(а):
А я бы ещё осторожно посоветовал уважаемому топикстартеру найти какое-нибудь средство для рисования графиков

Это действительно следует советовать с крайней осторожностью. Честные средства склонны строить честные графики до такой степени честно, что их в лицо и не опознать.

integral2009 в сообщении #690281 писал(а):
через вторые производные можно узнать, проверив выпуклость/вогнутость?

Вторые производные в этом конкретно вопросе не при чём, а вот что необходимо -- так это знать предельное значение слева от нуля первой производной.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 11 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group