В определении ни метрики, ни скалярного произведения никаких углов вообще нет. И когда Вы произносите слова "векторы под углом" -- это всего-навсего означает, что у Вас уже было задано некоторое скалярное произведение
вот тут непонятно. скалярное произведение в классической геометрии связывает длины векторов и угол между ними. причём эту величину выбрали так, чтобы она не меняла своего значения при параллельном переносе и повороте системы координат. исторически сложилось, что в качестве системы координат (СК) использовали
прямоугольную. и скалярное произведение определено через косинус, который определён для
прямоугольного треугольника. не понятно, когда вы говорите: "векторы под углом" -- это всего-навсего означает, что у Вас уже было задано некоторое скалярное произведение. напротив, я хочу выяснить, можно ли для косоугольной системы координат ввести скалярную величину, связывающую метрические характеристики векторов, или даже точнее, такую величину, значение которой не менялось бы при изменении угла между векторами. иначе получается, что для
специального угла (прямого) специальная величина есть (скалярное произведение).
-- 01.06.2012, 11:01 --"Эту величину" можно считать вещественным скалярным произведением только в случае, если она удовлетворяет следующим свойствам:
1. Она определена для любой пары векторов
2.
для любой пары векторов
3.
для любых трех векторов
4.
для любой пары векторов
и действительного числа
5.
, если
-- ненулевой элемент,
, если
-- нулевой элемент.
Поэтому до тех пор пока Вы не определили, как Ваша "скалярная величина" рассчитывается для любой пары векторов, мы не можем сказать, является ли она скалярным произведением.
Свойства(1)-(4) соблюдены - операция сложения векторов линейная и дистрибутивна относительно умножения на элементы вещественного поля. из осторожности, чтобы меня опять не уличили в абсолютном незнании предмета дискуссии скажу, что полной уверенности относительно свойства (5) нет - может специально надо проверить. но, судя по наглядной интерпретации направленных отрезков, считаю, что это свойство выполняется. во всяком случае не нахожу ненулевой вектор, удовлетворяющий
.
В этом случае можно?