Доказательство, что в евклидовых кольцах то, что элемент неприводим, значит, что он прост, и наоборот. Но, в доказательстве я не увидел, чтобы как-то использовалась евклидовость, только делимость и ассоциированность... (могу его привести, если надо).
И можно пример, где эти два понятия не равносильны? Вообще, правильно я понимаю, что любое поле имеет подполе (порожденное суммами единицы), которое по совместительству евклидово кольцо?
И вот ещё теорема:
- поле,
.
- неприводим -
- поле.
Доказательство:
неприводим
f прост (почему это?), (дальше переходы понятны).