Я же сказал: Не надо менять определения множества Рассела. Ибо тогда это уже будет не множество Рассела.
Не менять, а подправить, чтобы решить поставленную задачу.
Бертран Рассел решил образовать множество по признаку невхождения множества в самого себя. И с удивлением обнаружил, что у получившегося множества R этот признак зависит от того, куда мы поместим это множество R. И притом так, что нет возможности удовлетворить условие принадлежности к R. Задача оказалась неразрешимой, так же как инструкция брадобрею. И если мы поставленную задачу все же хотим решить, то придется подправить условие вхождения в R (так же как инструкцию брадобрею).
В результате исправления определение остается направленным на решение той же задачи: объединить в одну совокупность такие множества, которые сами в себя не входят. Оно остается определением, решающим задачу Рассела, короче, определением Рассела. А без исправления оно годится только разве что в архив.
А разбираться с парадоксами нужно, если мы не хотим иметь ложных теорем.
Просто нет номера у такого множества, вот и все дела. Видите ли, НЕ ВСЕ множества натуральных чисел оказываются пронумерованными.
Нумерация, то есть присвоение номера множеству есть действие произвольное. И если, как Вы говорите, , НЕ ВСЕ множества натуральных чисел оказываются пронумерован-ными, то возникает вопрос: а что же мне мешает множеству К дать номер? Ах, тогда получается противоречие? Ну, так это проблема того, кто придумал такое множество, которое оказалось противоречивым по отношению к своему номеру. Все та же неудачная инструкция. Ее тоже нужно подправить, чтобы решить аналогичную задачу: образовать множество внешних номеров. И причина противоречия все та же – наш произвол. А зачем это потребовалось, образовать такое множество? Да все для той же цели: чтобы что-то доказать. Ведь для доказательства нужно противоречие, а где его взять? Вот мы его и построим, глядишь, что-нибудь докажем.
Если ошибку исправить, то исчезает и противоречие, и доказательство.
А если не исправлять, то вместе с противоречием остается только видимость доказательства. Дело в том, что это противоречие появляется независимо от допущения противного. Пусть нет никакой биекции между М и U(M). Противоречие все равно появится, как только будет присвоен номер множеству внешних номеров. Откуда и видно, что ничего это противоречие не доказывает.
Противоречащие примеры - плизз в студию.
Да, противоречащих примеров для теоремы Кантора для натурального ряда мы не знаем. А для более экзотических множеств – это большое семейство так называемых антиканторовских множеств. Это прежде всего открытый самим Кантором пример – множество всех множеств. Это, далее, все сверхтранзитивные множества, содержащие в себе в качестве элементов все свои подмножества. Для таких множеств биекция между М и U(M) (или часть этой биекции) имеет вид F(x)=x: каждое подмножество, будучи одновременно элементом, имеет прообразом самого себя.
Все такие множества запрещены аксиомой регулярности. Если будет интерес, можем рассказать о них подробнее.
Из всех контрпримеров самый ядовитый – это контрпример, порождающий главный парадокс теории множеств.
http://infinyland.blogspot.com/2012/03/blog-post_18.html