Попробую рассказать, как я понимаю разницу между электродинамикой и ОТО, касательно "содержания уравнение движения".
И электродинамика и ОТО относятся к так называемым калибровочным теориям. Особенностью этих теория является то, что (лагранжевы) уравнения движения, с одной стороны, не определяют динамики однозначно --- существует калибровочный произвол, а, с другой стороны, часть из них не содержит вторых производных по времени и является так называемыми связями. В дальнейшем нам будет удобно вложить калибровочные теории в более широкий класс вырожденных теорий, уравнения движения которых также не могут быть разрешены относительно вторых производных по времени (и часть уравнений является связями), но которые, вообще говоря, могут не содержать калибровочного произвола.
Поскольку связи должны выполняться в любой момент времени, возникают дополнительные условия сохранения связей во времени. Эти условия могут приводить к
1) тождествам (типа 0=0 либо в силу имеющихся связей);
2) условиям, не содержащим динамических переменных (типа
), это просто условия на внешние по отношению к теории величины;
3) условиям, содержащим динамические переменные (типа
), то есть новым связям;
4) несовместности (типа 0=1), подобные теории мы отбрасываем.
Понятно, что процесс построения условий сохранения связей является рекуррентным и заканчивается пунктом 1) или 2). Полная система связей может допускать (связи первого рода) или не допускать (связи второго рода) калибровочного произвола, в зависимости от этого строятся физические (не зависящие от калибровки) величины.
В электродинамике построение полной системы связей заканчивается на первом шаге условием
(типа 2)), которое по отношению к электромагнитному полю является внешним. В неабелевых калибровочных теориях, в частности, в ОТО вместо этого получается условие
, которое является условием типа 3), и нужно строить связи дальше. Поэтому "внешний" источник не может быть задан произвольно: от этого меняется физическое содержание теории, может даже измениться число степеней свободы. Мне кажется, именно это пытаются подчеркнуть, когда противопоставляют электродинамику и ОТО. И еще мне кажется, что полезно рассмотреть промежуточный случай --- неабелеву калибровочную теорию с внешним источником в плоском простанстве-времени (когда-то я этим занимался в своей дипломной работе): там, с одной стороны, все почти так же, как в электродинамике, с другой --- производные длинные.