Цитата:
Моё дело привести пример, а дальше смотрите сами.
ИСН, с примером - это Вы круто. Но, может, закон больших чисел справедлив (или его аналог) и для среднего арифметического, и для медианы, и для моды, но друг к другу они не сходятся?
Может, это имел в виду
venco?
Цитата:
Мода выборки приближается к моде всего множества (если она есть).
Медиана выборки приближается к медиане всего множества.
Среднее арифметическое выборки приближается к среднему арифметическому всего множества.
Но все эти "идеальные" средние могут быть разными, и друг к другу не сходятся
Действительно, давайте разберёмся с самим законом.
Закон больших чисел для среднего арифметического я понимаю так.
У нас есть выборка результатов и мы "усредняем" их с помощью среднего арифметического. Если мы будем увеличивать выборку, то результат усреднения будет приближаться к истинному. Если неограниченно увеличиваем выборку, то результат неограниченно приближается к единице.
Законы больших чисел для медианы и моды аналогичны.
В целом, я думаю, это всё означает, что, увеличивая выборку, можно приблизится к некоторому истинному среднему независимо от того, каким из способов "усреднений" пользоваться: средним арифметическим, медианой, модой . Но "скорость" этого приближения может быть разной.
-- 29.11.2011, 14:28 --Цитата:
Если для нормального распределения, то выборочное среднее значение быстрее сходится к матожиданию с ростом n, чем выборочная медиана к генеральной.
Как это показать?