2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача по теории групп (Zn)
Сообщение19.12.2005, 21:33 
Помогите пожалуйста решить:
$\mathbb{Z}_n$-кольцо. Доказать: $\mathbb{Z}_n^*$ - циклическая мультипликативная группа кольца $\mathbb{Z}_n$.

Нигде не могу найти решения :(

 
 
 
 Это не так
Сообщение20.12.2005, 03:09 
Аватара пользователя
Например, ${\mathbb Z}^*_8 = <-1>_2\times<3>_2$.

Вообще, если $n=p_1^{n_1}\ldots p_k^{n_k}$, где $p_i$ --- простые, то, по китайской теореме об остатках,
$${\mathbb Z}_n^*\cong {\mathbb Z}_{p_1^{n_1}}^*\times\ldots\times {\mathbb Z}_{p_k^{n_k}}^*$$.
Остается разобраться с группами вида ${\mathbb Z}_{p^n}^*$. Если $p > 2$, то
${\mathbb Z}_{p^n}^*$ --- циклическая группа порядка $(p-1)p^{n-1}$.
Для $p =2$ имеем
${\mathbb Z}^*_2  = <1>_1$, ${\mathbb Z}^*_4  = <-1>_2$ и ${\mathbb Z}^*_{2^n}  = <-1>_2\times<3>_{2^{n-2}}$ при $n\geqslant 3$.

 
 
 
 
Сообщение20.12.2005, 09:15 
Что такое "мультипликативная группа кольца"? Есть понятие "мультипликативная группа поля". А кольцо $\mathbb{Z}_n$ ( если это кольцо вычетов по модулю $n$ c их сложением и умножением по этому модулю) будет полем $\Leftrightarrow$ $n=p$-простое число.

 
 
 
 
Сообщение22.12.2005, 17:50 
Аватара пользователя
Что такое "мультипликативная группа кольца"?
Не просто кольца, а ассоциативного кольца с нейтральным по умножению элементом (а в данном случае ещё и коммутативного). Это группа всех обратимых по умножению элементов этого кольца. В случае кольца ${\mathbb Z}_n$ его группа обратимых элементов ${\mathbb Z}_n^*$ будет циклической в случаях (и только в этих случаях):
$n=2, 4, p^k$ и $2p^k$, где $k>0$, а простое $p>2$.
См. выше пост lofar'а.
Доказательство можно найти в любом учебнике по теории чисел.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group