Решая одну из задач (на нахождение допустимых экстремалей) пришел к такому уравнению:
Посмотрев старую тетрадку по диффурам, вспомнилось, что в общем-то это можно решить, воспользовавшись методом вариации произвольной постоянной, решив систему
Все бы хорошо, но решение сей системы достаточно затруднительно (много вычислений), в то время как задача не предполагает отводить много вычислений именно на это (соответственно и на экзамене будь такая задача - времени решать особо не будет).
Однако на практических занятиях, возникали лишь подобные уравнения, где справа стояло что-то навроде Ksin(x), что решалось достаточно просто и быстро - Yобщее = Yобщее_однородное + Yчастное_неоднородное. Бралось, что Yчастное_неоднородное = (acos(x) + bcos(x))x, подстановкой в исходное уравнение находились коэфициенты a, b.
Однако, ясно дело в данном случае этот вариант не прокатывает (справа sin(2x) и коэфициенты так не найти).
Собственно вопрос - какого вида надо брать Yчастное_неоднородное для такого случая? Или все таки только метод вариации произвольной постоянной проходит и такого упрощения задачи не получится?
Так же, сейчас увидел в других вариантах, что справа может стоять Ksh(x), либо в некоторых заданиях Kx.
И вообще интересен принцип, каким образом подбирать Yчастное_неоднородное.