Lion писал(а):
Если предполагалось решение в целых числах (а иначе решений бесконечно много), решить можно так: переписываем уравнение в виде
, дальше в силу транцендентности функции
получаем, что
.
Да забыл написать, что в целых числах, хотя хорошо было бы и общее решение увидеть. Действительно, существует решение использующее трансцедентность числа е, поэтому счас думаю заменить его на некоторое алгебраическое иррациональное число
. Я имеел ввиду решение состоящее в следующем перепишем уравнение следующим образом
, будем рассматривать эту сумму как скалярное произведение векторов. Оно равно нулю, значит вектора ортогональны, один из другого получается поворотом на 90 градусов и растяжением в k раз. А значит имеем равенства
и
откуда сразу находим
и затем уже несложно найти целые значения для y