Нужно реализовать подсчет той формулы что я написал, в Mathematice оно не работает почему-то.
-- Вс фев 27, 2011 19:21:26 --То что есть.
Код:
Subscript[h, 1] = 3;
Subscript[h, 2] = 6;
Subscript[\[Lambda], 1] = 2;
Subscript[\[Lambda], 2] = 3;
\[Upsilon] = 0.5;
\[Mu] = 4;
NN = 10;
A1[i_] := ( {
{Subscript[\[Lambda], 1] + i*\[Upsilon], -\[Mu]},
{-Subscript[\[Lambda], 1],
Subscript[\[Lambda], 1] + i*\[Upsilon] + \[Mu]}
} );
B1[i_] := ( {
{0, 0},
{((i + 1)*\[Upsilon]*(Subscript[\[Lambda], 1] + 2*\[Mu]))/
Subscript[\[Lambda], 1], ((i + 1)*\[Upsilon]*2*\[Mu])/
Subscript[\[Lambda], 1]}
} );
CC1 = ( {
{0, 0},
{(Subscript[h, 1]*\[Upsilon]*2*\[Mu])/Subscript[\[Lambda], 1], (
Subscript[h, 1]*\[Upsilon]*2*\[Mu])/Subscript[\[Lambda], 1]}
} );
A2[i_] := ( {
{Subscript[\[Lambda], 2] + i*\[Upsilon], -\[Mu]},
{-Subscript[\[Lambda], 2],
Subscript[\[Lambda], 2] + i*\[Upsilon] + \[Mu]}
} );
B2[i_] := ( {
{0, 0},
{((i + 1)*\[Upsilon]*(Subscript[\[Lambda], 2] + 2*\[Mu]))/
Subscript[\[Lambda], 2], ((i + 1)*\[Upsilon]*2*\[Mu])/
Subscript[\[Lambda], 2]}
} );
CC2 = ( {
{0, 0},
{(Subscript[h, 1]*\[Upsilon]*2*\[Mu])/Subscript[\[Lambda], 2], (
Subscript[h, 1]*\[Upsilon]*2*\[Mu])/Subscript[\[Lambda], 2]}
} );
EE = ( {
{1, 0},
{0, 1}
} );
Subscript[EE, 0] = {{0, 0}, {1, 0}};
DD = ( {
{1, 0},
{Subscript[\[Lambda], 2] + NN*\[Upsilon], -\[Mu]}
} );
\[CapitalDelta]1[j_] := (\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i = j\), \(
\*SubscriptBox[\(h\), \(1\)] - 1\)]\(Inverse[A1[i]] .
B1[i]\)\)).(((\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(
\*SubscriptBox[\(h\), \(2\)] - 2\)]\(Inverse[A1[i]] .
B1[i]\)\)).Inverse[A1[Subscript[h, 2] - 1]].CC2 + \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
\*SubscriptBox[\(h\), \(1\)]\), \(
\*SubscriptBox[\(h\), \(2\)] - 2\)]\(\((
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(k - 1\)]Inverse[A1[i]] .
B1[i])\) Inverse[A1[k]] . CC2\)\)) + EE).Inverse[(EE + \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
\*SubscriptBox[\(h\), \(1\)]\), \(
\*SubscriptBox[\(h\), \(2\)] - 1\)]\(\((
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(k - 1\)]Inverse[A2[i]] .
B2[i])\) Inverse[A2[k]] . CC2\)\))].(\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(NN - 1\)]\(Inverse[A2[i]] .
B2[i]\)\)).Inverse[DD].Subscript[EE, 0];
А нужно сделать кругом матричные произведения.
Код:
\[CapitalDelta]1[j_] := (\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i = j\), \(
\*SubscriptBox[\(h\), \(1\)] - 1\)]\(Inverse[A1[i]] .
B1[i]\)\)).(((\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(
\*SubscriptBox[\(h\), \(2\)] - 2\)]\(Inverse[A1[i]] .
B1[i]\)\)).Inverse[A1[Subscript[h, 2] - 1]].CC2 + \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
\*SubscriptBox[\(h\), \(1\)]\), \(
\*SubscriptBox[\(h\), \(2\)] - 2\)]\(\((
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(k - 1\)]Inverse[A1[i]] . B1[i])\) .
Inverse[A1[k]] . CC2\)\)) + EE).Inverse[(EE + \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k =
\*SubscriptBox[\(h\), \(1\)]\), \(
\*SubscriptBox[\(h\), \(2\)] - 1\)]\(\((
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(k - 1\)]Inverse[A2[i]] . B2[i])\) .
Inverse[A2[k]] . CC2\)\))].(\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i =
\*SubscriptBox[\(h\), \(1\)]\), \(NN - 1\)]\(Inverse[A2[i]] .
B2[i]\)\)).Inverse[DD].Subscript[EE, 0];