Кривая Безье 5-го порядка имеет 6 опорных точек (
). В параметрической форме задается следующим уравнением:
При этом параметр
. Вы же сказали, что читали на Вики, а там указано то как задается уравнение, и то как изменяется параметр, и даже анимированные картинки есть... Еще раз повторюсь - порядок гладкости функции определяется тем, сколько непрерывных производных она имеет. Вы дифференцировать умеете? Возьмите любую элементарную функцию, продифференцируйте 1 раз - если результат есть непрерывная функция, то исходная гладкая 1-го порядка, если то же для второй производной, то и второго порядка, если то же для третьей производной... Ну, Вы поняли
Примеры простые:
- если дифференцировать хоть бесконечное количество раз, то все производные непрерывные, такие функции наз. аналитическими. Сколько порядков гладкости, по Вашему, имеет, например, функция
?
Кстати, насчет гладкости второго порядка... Я полагаю, в Вашей задаче нужно вычертить фигуру кривыми Безье так, чтобы итоговая кривая была дважды непрерывно дифференцируема. Например, если две кривые Безье будут соединены так, что образуют в месте склейки острый угол, то такая кривая не будет иметь даже первого порядка гладкости.