2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 
Сообщение22.10.2006, 19:38 
Аватара пользователя
Любая, лишь бы удовлетворяла требованию
Цитата:
содержит конечное число элементов
.

 
 
 
 Re: Небольшой вопрос по теории меры
Сообщение22.10.2006, 20:27 
Brukvalub писал(а):
Любая, лишь бы удовлетворяла требованию
Цитата:
содержит конечное число элементов
.

понятно
finanzmaster писал(а):
Когда я начинал изучать сигма-алгебры, было очень полезно не лениться и выписывать примеры - хотя они уже в простейшем случае получаются громоздкими...


Ну до теории вероятности мы еще не дошли, хотя и здесь в принципе почти все понятно. И все-таки, ради интереса, почему сигма-алгебра для первого броска будет именно такой:
finanzmaster писал(а):
$$
\eqalign{
  & \sigma ((\{ HH\} \bigcup {\{ HT\} ),} (\{ TH\} \bigcup {\{ TT\} )} ) =   \cr 
  & (\emptyset ,\Omega ,(\{ HH\} \bigcup {\{ HT\} ),} (\{ TH\} \bigcup {\{ TT\} )} ) \cr} 
$$

 
 
 
 Re: Небольшой вопрос по теории меры
Сообщение22.10.2006, 22:34 
Gecr писал(а):
Ну до теории вероятности мы еще не дошли, хотя и здесь в принципе почти все понятно. И все-таки, ради интереса, почему сигма-алгебра для первого броска будет именно такой:
finanzmaster писал(а):
$$
\eqalign{
  & \sigma ((\{ HH\} \bigcup {\{ HT\} ),} (\{ TH\} \bigcup {\{ TT\} )} ) =   \cr 
  & (\emptyset ,\Omega ,(\{ HH\} \bigcup {\{ HT\} ),} (\{ TH\} \bigcup {\{ TT\} )} ) \cr} 
$$

Потому что она отображает известную нам информацию. Пусть для определенности при 1-м броске выпала решка. Тогда запись
$$
(\{ HH\} \bigcup {\{ HT\} )} 
$$ и означает это событие. В самом деле - это объединение двух указанных элементарных событий HH и HT. Т.е. если решка выпала - значит одно из них наступило.

А раз мы знаем $$
(\{ HH\} \bigcup {\{ HT\} )} 
$$ , то знаем и его дополнение до омеги(то есть противоположное событие) - вместе с которым и порождается сигма-алгебра

 
 
 
 
Сообщение24.10.2006, 09:05 
Вот дано еще одно определение: Пусть - ($\Omega$, F,\mu)измеримое пространство с мерой. Множество $N\subset \Omega$ называется \mu-нулевым, если существует такое $C\in F$, что $N\subset C$ и \mu(C) = 0. Пространство ($\Omega$, F,\mu) называется полным, если F содержит все \mu-нулевые подмножества \Omega.
Вопрос: искомое пространство будет неполным, если F не содержит все \mu-нулевые подмножества \Omega, т.е. существует $N1\notin F$, но N1 - \mu-нулевое, т.е. $N1\subset C$ и \mu(C) = 0, но следовательно $N1\in F$, т.е. получается, что не существует неполного пространства. В чем ошибка, подскажите пожалуйста определение неполного пространства с мерой.

 
 
 
 
Сообщение24.10.2006, 09:56 
Аватара пользователя
$F$ не обязана содержать все $\mu$-измеримые множества. Поэтому из того, что $\mu(N1)$ определена и равна нулю не следует, что $N1\in F$.

 
 
 
 
Сообщение24.10.2006, 10:19 
Аватара пользователя
Из $N_1\subset C$ и $\mu C=0$ следует, что $C\in\mathfrak{F}$, и больше ничего.
Вот простой пример:
$$\Omega=\{1,2,3\},\mathfrak{F}=\{\varnothing,\Omega,\{1\},\{2,3\}\},\mu(\{1\})=1,\mu(\{2,3\})=0.$$

 
 
 
 
Сообщение24.10.2006, 21:04 
точно, как я раньше не заметил...
А можно узнать, функцию от множества в данном случае рассматривать, как функцию от нескольких переменных? А если множество несчетное, то как она определяется?

 
 
 
 
Сообщение24.10.2006, 21:52 
Аватара пользователя
Функции множеств не рассматриваются как функции от (числовых) переменных. Это просто некоторое сопоставление каждому множеству определенного числа, ничего более.

 
 
 
 
Сообщение29.10.2006, 22:02 
Дана такая задача: $\Omega$ = [0;1], C = {[0; 0,5] , [1/3; 1]}. Найти минимальную \sigma-алгебру \sigma(C). Вопрос такой: правильным ли будет, что \sigma(C) = {[0; 0,5], (0,5; 1], [1/3; 1], [0; 1/3), $\Omega$, пустое множество} Ведь я же взял исходные множества, их дополнения, $\Omega$, пустое множество, согласно определению \sigma-алгебры. а то у меня почему то не сходится...

 
 
 
 
Сообщение29.10.2006, 22:19 
Аватара пользователя
Еще должны войти пересечения исходных множеств, разности пересечений и исходных множеств и т.п. Прочтите определение алгебры и сигма-алгебры и в точности ему следуйте.

 
 
 
 
Сообщение29.10.2006, 23:07 
Точно, согласен! Просто я забыл, что любая \sigma-алгебра является алгеброй :oops:

 
 
 
 
Сообщение30.10.2006, 18:50 
Аватара пользователя
Gecr писал(а):
Точно, согласен! Просто я забыл, что любая \sigma-алгебра является алгеброй :oops:


В общем случае два подмножества множества $\Omega$ порождают $\sigma$-алгебру из $16$ элементов. В данном случае $[0;0.5]\cup[\frac 13;1]=\Omega$, поэтому получается $8$ различных элементов.

 
 
 [ Сообщений: 27 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group