А откуда взялось такое требование?
Из вменяемого подхода к решению задачи.
Конкретная задача тут в общем-то не причём; тут дело в том, как именно мы измеряем положение в пространстве и времени.
Нужна система отсчёта (тело отсчёта и часы), чтобы иметь систему координат (совокупность физвеличин, значения которых определяют положение в пространстве и времени).
Невозможно иметь систему координат без системы отсчёта.
Сначала система отсчёта, потом -- система координат, а не наоборот.
Чтобы физвеличина стала координатой, она должна определять положение в пространстве, а само пространство (физсвойство протяжённость) определяется именно телом отсчёта.
В классической физике длина и время абсолютны; следствием этого служит требование абсолютной твёрдости тела отсчёта (возможность существования таких тел -- условие применимости классфизики).
Но надо понимать, что понятие "связать систему координат с чем-то" не является строгим. Оно понимается интуитивно.
Эдак бы и результаты вычислений по таким координатам лишь на интуитивном уровне были бы связаны с реальностью.
В принципе, какой-нибудь очень не ленивый человек, может связать с резинкой систему отсчета, введя, например, координату
, которая меняется от нуля до единицы на резинке.
Я вот копаю учебники на сей предмет.
Например, Риндлер (W.Rindler, широко известный в узких кругах физик) в 21-м веке издал современный учебник по теории относительности.
Так вот, он явно помнит, что тело отсчёта в классической физике абсолютно твёрдое, но почему, похоже, уже не помнит и говорит лишь об удобстве жёстких систем отсчёта.
В рядовых же учебниках про это днём с огнём не сыщешь.
Пожалуй, можно сказать, что за совершенной ненадобностью то, что в классфизике тело отсчёта обязано быть абсолютно твёрдым, просто позабылось уже окончательно.
Интересно наблюдать, как ненужное отмирает путём забывания о его существовании.
Дело в том, что в релятивистской физике, в отличие от классической, мы такое сможем сделать.
А какая разница?
Пространство и время относительны.
Да только говорить о конечных промежутках времени и расстояниях, измеренных относительно произвольной системы отсчёта, в общем случае не получится...
Как не получится??
В прямом смысле.
Уже для самых простых неинерциальных систем отсчёта не удаётся иметь в них единое во всём пространстве время или конечную длину (только локально, в бесконечно малом объёме).
Тут не координатные время и длина имеются в виду а, словами Л.Л.
истинные (физические).
Я тут придерживаюсь той точки зрения, что мы просто не умеем вычислять результаты измерений, которые могут быть проделаны.
Но это уже совсем другая история...
Вот как-то так.
Да, типа так.
Вы меня порадовали.
А то я очень зол на Сеть и на то, что мощь её вредного влияния недооценивается.