2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 полушарие
Сообщение23.04.2010, 08:19 
На горизонтальной плоскости в поле сил тяжести стоит однородное полушарие, которое может перекатываться по плоскости без проскальзывания. Найти частоты малых колебаний этой системы в окрестности положения равновесия. (Масса и радиус полушария известны)

 
 
 
 Re: полушарие
Сообщение23.04.2010, 13:33 
Пишите выражение для полной энергии, в него войдут три слагаемых: кинетическая энергия поступательного движения, энергия вращения и потенциальная. Считайте, что проскальзывания нет, тогда выразится вся кинетическая энергия через $\Omega=\dot \phi$, потенциальную найдите, чтобы она выражалась через $\phi$ - угол между вертикалью и прямой проведенной через центр полушара, ортогональной "основанию" этого полушара; в состоянии покоя $\phi=0$. Потребуется найти момент инерции относительно точки качения, тут в помощь теорема Гюйгенса-Штейнера, также нужно найти центр масс. Когда полный интеграл будет собран, возьмите полную производную $\frac{\ d }{\ dt}E(t)=0$ это даст вам уравнение движения в виде $\ddot{\phi}=\omega^2 \phi$.

 
 
 
 Re: полушарие
Сообщение23.04.2010, 14:05 
lel0lel
Угла-то два - две степени свободы у полушария. Причем их изменение не произвольно, а связано условием отсутствие проскальзывания, а это (вроде бы) неголономная связь .

 
 
 
 Re: полушарие
Сообщение23.04.2010, 14:06 
lel0lel в сообщении #312433 писал(а):
Пишите выражение для полной энергии, в него войдут три слагаемых: кинетическая энергия поступательного движения, энергия вращения и потенциальная. Считайте, что проскальзывания нет, тогда выразится вся кинетическая энергия через $\Omega=\dot \phi$, потенциальную найдите, чтобы она выражалась через $\phi$ - угол между вертикалью и прямой проведенной через центр полушара, ортогональной "основанию" этого полушара; в состоянии покоя $\phi=0$. Потребуется найти момент инерции относительно точки качения, тут в помощь теорема Гюйгенса-Штейнера, также нужно найти центр масс. Когда полный интеграл будет собран, возьмите полную производную $\frac{\ d }{\ dt}E(t)=0$ это даст вам уравнение движения в виде $\ddot{\phi}=\omega^2 \phi$.

По-Вашему выходит, что у этой системы одна стеень свободы. Это неверно.

 
 
 
 Re: полушарие
Сообщение23.04.2010, 14:16 
А нет, ничем не связаны, произвольно могут изменятся.

 
 
 
 Re: полушарие
Сообщение23.04.2010, 15:26 
Padawan в сообщении #312439 писал(а):
две степени свободы у полушария.

3 степени свободы

 
 
 
 Re: полушарие
Сообщение23.04.2010, 15:38 
Точно, еще ведь вращение вокруг точки касания!

 
 
 
 Re: полушарие
Сообщение23.04.2010, 23:19 
Padawan в сообщении #312439 писал(а):
Причем их изменение не произвольно, а связано условием отсутствие проскальзывания, а это (вроде бы) неголономная связь .
Ну отсутствие проскальзывания, это условие идеальности связи. Да, безусловно я поспешил с решением. Тут связь неинтегрируемая и действительно три степени свободы. Можно решать методом неопределенных множителей Лагранжа. Но всё же, для частного случая частоту найти можно и тем чем я написал. Вот только тут вполне конкретный вопрос. Я думал, что это Вам помочь нужно, ну и не глядя набросал, что в голову пришло, думая о тривиальности задачки.

 
 
 
 Re: полушарие
Сообщение24.04.2010, 08:43 
lel0lel в сообщении #312651 писал(а):
Можно решать методом неопределенных множителей Лагранжа.

Сначала надо понять, что следует называть частотами малых колебаний для неголономной системы.
Смысл задачи именно в этом. Выволелось это понятие из современных курсов теормеха. Вот в чем дело.

 
 
 
 Re: полушарие
Сообщение16.06.2010, 12:09 
Мне представляется возможным свести задачу к задаче с двумя степенями свободы . Суперпозиция колебаний с одинаковыми частотами в разных плоскостях даст одно с той же частотой .

 
 
 
 Re: полушарие
Сообщение22.06.2010, 17:22 
Классная задача! причём, чисто физическая.

(Оффтоп)

Я уже только исключительно в эту ветку сюда и хожу.
Хотелось бы решение-то увидеть ж, наконец.


terminator-II в сообщении #312704 писал(а):
Сначала надо понять, что следует называть частотами малых колебаний для неголономной системы.

...В связи с чем предлагаю вспомнить что такое гироскопический эффект...

ГАЗ-67 писал(а):
Мне представляется возможным свести задачу к задаче с двумя степенями свободы .

Поясните подробнее: по какой именно причине учитывать третью степень свободы (вращение полушария вокруг оси его симметрии) не следует?

 
 
 
 Re: полушарие
Сообщение22.06.2010, 20:17 
zbl в сообщении #333847 писал(а):
Хотелось бы решение-то увидеть ж, наконец.

Решение я писать не стану потому как букаф многа. А смысл задачи состоит в том, что неголономная связь в линейном приближении в окрестности положения равновесия превращается в голономную, а сама задача -- в самую стандартную лагранжеву систему с тремя стеменями свободы.

zbl в сообщении #333847 писал(а):
...В связи с чем предлагаю вспомнить что такое гироскопический эффект...

не понял

 
 
 
 Re: полушарие
Сообщение23.06.2010, 20:49 
terminator-II в сообщении #333929 писал(а):
А смысл задачи состоит в том, что неголономная связь в линейном приближении в окрестности положения равновесия превращается в голономную

Может, упростить как условие? сделать только две степени свободы чтобы было?
terminator-II в сообщении #333929 писал(а):
zbl в сообщении #333847 писал(а):
...В связи с чем предлагаю вспомнить что такое гироскопический эффект...

не понял

Вот, возьму я то полушарие, наклоню слегка его ось симметрии от вертикали и сообщy ему угловую скорость вращения вокруг той оси, потом отпущу -- что дальше будет?
Разве ж ось вращения назад вернётся в вертикальное положение?

 
 
 
 Re: полушарие
Сообщение25.06.2010, 21:22 
Если хотите посмотреть аналогичную задачу с двумя степенями свободы возьмите конек Чаплыгина на горизонтальной плоскости и прицепите его пруженой к некоторой фиксированной точке этой плоскости.

 
 
 
 Re: полушарие
Сообщение11.09.2010, 22:27 
Аватара пользователя
Замечательной громоздкости штуковина. Пять степеней свободы, две неголономные связи... Впрочем, на последнем этапе можно будет оставлять только линейные по угловым скоростям члены...

terminator-II
Я так понимаю, что расчет без пренебрежений Вы провели? И что, действительно к голономным сводятся?

 
 
 [ Сообщений: 20 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group