Задание: Доказать, что множество всех последовательностей, состоящих из 0 и 1, имеет мощность С.
Моё доказательство:
1. Поставим в соответствие каждой последовательности натуральное число (переводим двоичную последовательность в десятеричное число, например
), нулевой последовательности ставим в соответствие 0. Но тогда у меня получится счетное множество? Эквивалентность с множеством натуральных чисел...
2. В примере нашла такой метод: каждой последовательности
Тогда каждой последовательности будет соответствовать некоторое число, лежащее на полуинтервале [0,1), а он, как известно, имеет мощность множества континуума...
Вопрос: нужен ли первый шаг? Если не нужен, как построить соответствие между мн-вом всех последовательностей из 0 и 1 и множеством мощности континуума (0,1)? И правильно ли я все формулирую (препод цепляется к каждому слову...)?