Рассмотрим непрерывно-дифференцируемую периодическую функцию с периодом

.
Пусть модули функции и ее производной ограничены константами

и

.
Вопрос:
Что определенного и интересного можно сказать про ряд Фурье такой функции?
Мне конкретно интересно следующее:
Будет ли ряд Фурье сходиться равномерно к самой функции? Если нет, то что требуется для равномерной сходимости?
Сколько членов ряда Фурье достаточно для приближенного описания функции с точностью до процента -

?
Более общий теоретический вопрос:
Гладкую периодическую функцию можно с некоторой точностью описать таблицей.
Сколько бумаги (памяти) мы сэкономим, если с той же точностью опишем ее рядом Фурье.