2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 численное нахождение площади поверхности
Сообщение25.12.2009, 15:18 
Аватара пользователя
имеется поверхность в 3D, заданная массивом точек, лежащих на этой поверхности. Предложите алгоритм для нахождения площади этой поверхности. Поверхность гладкая

 
 
 
 Re: численное нахождение площади поверхности
Сообщение26.12.2009, 21:26 
Аватара пользователя
Для гладкой поверхности можно использовать следующий алгоритм:
1. Для любой точки находятся две ближайшие и строится три ребра.
2. Записывается первый треугольник.
3. Составляется петля из точек. Вначале в ней 3 точки, в последующем их число будет расти вплоть до числа граничных точек на поверхности.
4. Находятся 2 точки из петли и одной точки из оставшихся точек с минимальной суммой расстояний. Данные три точки записывают в следующий треугольник. Число точек в петле увеличивается на 1.
5. Проверяется выпуклость петли. Если угол между двумя ребрами в точке меньше фиксированного угла, например 120 градусов - точка выбрасывается из петли с записью треугольника. Угол необходимо определять с использованием нормали к треугольникам.
6. Суммируется площадь всех записанных треугольников.

 
 
 
 Re: численное нахождение площади поверхности
Сообщение31.12.2009, 04:50 
photon в сообщении #275099 писал(а):
имеется поверхность в 3D, заданная массивом точек, лежащих на этой поверхности. Предложите алгоритм для нахождения площади этой поверхности. Поверхность гладкая

Известна ли природы этой поверхности, иначе говоря можно ли на ней ввети параметрическую систему координат?
Задает ли массив точек границу поверхности, или могут встречаться и внутренние точки, самопересечения и др.?

 
 
 
 Re: численное нахождение площади поверхности
Сообщение18.01.2010, 14:32 
Аватара пользователя
Zai, спасибо.

Roman Voznyuk в сообщении #276639 писал(а):
Задает ли массив точек границу поверхности, или могут встречаться и внутренние точки, самопересечения и др.?

Да, задает. Грубо говоря, это сфера, местами вдавленная, местами вытянутая (возможно, ее довольно сильно покорёжит, но не до такой степени, чтобы получились самопересечения)

 
 
 
 Re: численное нахождение площади поверхности
Сообщение13.02.2010, 14:51 
Возможно вам стоит ознакомится с работой Алпатова (диссертация РГРТУ).
Он составлял программу для визуализации движения сердечной мышцы. Там, как раз поверхность описывалась уравнением, потом уточнялись впадины.
Вроде там вычислялась, также и площадь (не уверен)
По обработке фотографий поверхности Земли, также подобную задачу можно встретить.

 
 
 
 Re: численное нахождение площади поверхности
Сообщение27.02.2010, 06:30 

(Оффтоп)

Цитата:
Возможно вам стоит ознакомится с работой Алпатова (диссертация РГРТУ).
Он составлял программу для визуализации движения сердечной мышцы. Там, как раз поверхность описывалась уравнением, потом уточнялись впадины.
Вроде там вычислялась, также и площадь (не уверен)
По обработке фотографий поверхности Земли, также подобную задачу можно встретить.

Да. Или через одно место автогеном. Тоже вариант. :D :D :D :D :D :D :D :D :D

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group